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Abstract

Terrorism in Africa has increased more than six-fold since 1997, with an increase

in lethality as well. The U.S. government has spent billions of dollars to counter

this increase in terrorism; however, terrorism in Africa has increased seemingly un-

abated. Furthermore, these methods used to counter-terrorism have been reactionary

as opposed to preventative. To address the terrorism threat to a country, we must

first understand which characteristics make a country vulnerable to such a threat.

A confirmatory analysis bridges the inter-discipline gap between quantitative and

qualitative fields through as assessment of observational findings about the causes

of terrorism. An exploratory analysis evaluates additional variables to find indica-

tors with predictive ability. Lastly, a classification analysis further analyzes these

indicator relationships in order identify break points where vulnerabilities are most

detected. Ultimately, these indicators should aid in providing key strategic options

to reduce the terror threat and vulnerabilities across Africa.

Key words: Terrorism, Africa, Negative Binomial Regression, Classification Tree
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INDICATORS OF

TERRORISM VULNERABILITY IN AFRICA

I. Introduction

1.1 Background Motivation

In 2006, David Kilcullen stated that there has been more written about insurgency

in the last four years then the last four decades, when the terminology was created [2].

Terrorist organizations, in recent history, have been conducting operations similar to

insurgents, such as living among the population in highly urbanized areas, where they

conduct both recruiting and operations. It is important to note that this increased

interest in terrorism is not based upon a single event, but in an increasing trend in

terrorist attacks. From the years 1968-1997, the global average number of attacks

ranged between 243 and 305 events annually. However, since 1997, that number has

increased more than 6 times resulting in between 1589 to 1895 events per year [3].

Between these time periods, the lethality of terrorist attacks have also increased [3].

The United States government states that it has “no greater responsibility then en-

suring the safety and security of the American people.” [4] Today, the global terrorism

threat presents the greatest viable threat to the American people and therefore, is

one of the main focuses of the United States government, as well as the rest of the

world.

Despite the importance of the issue, little is known about modern terrorism. Par-

tially, this is due to the nature of today’s insurgents, who differ significantly in terms

of “policy, strategy, operational art, and tactical technique” from past insurgents [2].
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Consequently, this puts the United States and the world as a whole in a position

where we know little about this global threat. Furthermore, this lack of understand-

ing of this adversary has caused the U.S. to take a reactionary stance to countering

terrorism, instead of a preventative stance.

1.2 African Focus

Many individuals have analyzed relationships between variables at the country

level and the number of terrorist attacks in that country. This analysis ranges in

size from a global scale to southeastern Turkey. Despite this wide range, looking

specifically at terrorism at the country level in Africa has not been conducted in the

current literature.

Many terrorist groups have been both forming and/or expanding operations in

Africa [5]. Additionally, Africa serves as both a recruiting ground and sanctuary

for terrorists [6]. Africa creates a security dilemma for the United States. The ad-

vent of terrorism has caused the United States to be as vulnerable to weak states as

strong states and the U.S. has a lot of poorly secured targets in Africa [6]. Conse-

quently, American involvement has increased in Africa and the military established

the AFRICOM command in February 2007 [6].

This provides a vast security dilemma for both Africa and the rest of the world.

By focusing this research on Africa, specific insights into this problem can be gained,

which can lead to a specific strategy to potentially prevent terrorist attacks in the

future.

Africa has numerous traits that when aggregated drastically separate it from the

rest of the world. Some of these traits include a low openness to trade, low primary

school enrollment, a low investment portion of Gross Domestic Product (GDP), a high

public spending portion of GDP, high population growth, and strategic resources such

2



as oil and natural gas [5]. Consequently, this research focuses on Africa to unveil the

specific relationships between socio-economic traits and the prevalence of vulnerability

to terrorist attacks.

1.3 Problem Statement

To better understand the current terrorism threat in Africa, this research addresses

the following three questions.

1. Can the qualitative relationships considered indicators of terrorism be quantita-

tively supported with a generalized linear model?

2. Can other potential indicators of terrorism be quantitatively explored and sup-

ported with a generalized linear model?

3. Can these variable relationships undergo classification methods, such as classifica-

tion trees, in order to determine breakpoints in characteristics of countries, which

indicate increased vulnerability to terror attacks?

Answering these questions helps confirm and/or explore which characteristics best

describe patterns among terrorism targets in Africa. Then, determining breakpoints

of these characteristics provides an opportunity to reduce Africa’s vulnerability to

terrorism. Terrorism reductions will occur by adopting a strategy that shapes the

environment and limits specific areas of vulnerability from future terrorist attacks.

The hope is these insights will be adopted by the U.S. to strategically disrupt the

terrorism threat in Africa.

1.4 Proposed Approach

Multivariate techniques are applied to data characterizing each country, such as

socio-economic and demographic attributes. The response variable is the annual

3



number of terrorist attacks in an African country, while the independent variables

are various socio-economic and other country characteristics. This analysis provides

insight into African terrorism and helps suggest methods the U.S. can alter its strategy

based upon this new information.

1.5 Preview

Chapter 2 discusses the compiled literature review associated with this problem.

This includes important definitions, the current U.S. policy for counter-terrorism and

similar research. This past research analyzes both common methodology techniques,

as well as current beliefs about socio-economic statistics and terrorism. Chapter 3

focuses upon the methodology and analysis of the first research question listed in

Section 1.3. This includes a description of the data, the proposed approach and ac-

companying assumptions, the analysis results, as well as the validation techniques.

Chapter 4 focuses upon the methodology and analysis of the second research question

listed in Section 1.3. This includes an overview of the data and results of the analysis.

Chapter 5 further explores classification analysis for the indicators specified in Chap-

ter 4 in order to find break-points in the data, which answers the third question listed

in Section 1.3. Finally, Chapter 6 concludes the research, highlighting the research

insights and detailing areas for future study.
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II. Literature Review

This chapter begins by defining terms used throughout the research, then the cur-

rent U.S. counter-terrorism policy is overviewed including homeland risk, and lastly,

similiar research and their results are reviewed.

2.1 Definitions

Two important definitions to define upfront are terrorism and vulnerability.

Terrorism.

One commonly debated definition is that of terrorism. The Department of State

defines terrorism as “means premeditated, politically motivated violence perpetrated

against noncombatant targets by subnational groups or clandestine agents [7].” While

the Department of Defense (DoD) defines terrorism as “The unlawful use of violence

or threat of violence to instill fear and coerce governments or societies. Terrorism

is often motivated by religious, political, or other ideological beliefs and committed

in the pursuit of goals that are usually political [8].” Despite some similarities, even

departments within the U.S. government do not use a consistent definition. For

instance, the Department of State specifies that terrorist attacks are committed by

subnational groups or agents against noncombatants, while the DoD does not include

these specifications. While the differences may seem trivial at first, this means that

the DoD could consider an attack from a nation against the U.S. military as a terrorist

attack. Additionally, the Department of State clarifies that the terrorist attack must

actually occur, while the DoD considers threats of terrorism as terrorist attacks.

Therefore, the specific definition of terrorism used helps clearly define the scope of

the analysis and to have clear boundaries defining what does and does not constitute
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an attack.

Enders and Sandler define terrorism as “the premeditated use or threat to use

violence by individuals or subnational groups in order to obtain a political or social

objective through the intimidation of a large audience beyond that of the immediate

victims [9].” They go on to state that the majority of modern terrorism definitions

have two main components, presence or threat of violence and political or social objec-

tive. Definitions also commonly explain that terrorism is committed by a perpetrator,

against a victim, and for an audience. The Department of State and Department of

Defense both contain these common components.

These common components of definitions of modern terrorism highlight much

about modern terrorist. For instance, the goal of modern terrorism is to circumvent

the standard politics of a country and cause political change through threats and

violence [9]. Secondly, although attacks are premeditated and planned against certain

targets, there is a secondary target, which is the audience. In order to instill fear in

this audience, and therefore have some level of control over them, terrorists attempt

to make their actions appear random. By doing this, the audience is unsure when

or where the next attack will occur. Therefore, more fear is instilled in the audience

because of the uncertainty around becoming victims of the next attack [9]. This leaves

the population, or its representative government, with two distinct choices, concede

to the terrorists or stop the terrorists. The U.S. has clearly stated its intention to stop

terrorists [4], and must create an effective strategy to complete this task. Over the

last decade, a strategy has been developed, but it has proven to be rather ineffective

[10]. A new strategy must be adopted that will allow the U.S. to meet its goals.

The definition of terrorism used for this research is that used by the National Con-

sortium for the Study of Terrorism and Responses to Terrorism (START). START

uses the following definition to determine inclusion into the Global Terrorism Database
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(GTD). The GTD defines a terrorist attack as “the threatened or actual use of illegal

force and violence by a non-state actor to attain a political, economic, religious, or

social goal through fear, coercion, or intimidation.” For the database, to include an

incident, all three of the following attributes must be present [11]:

1. The incident must be intentional, the result of a conscious calculation on the part

of a perpetrator.

2. The incident must entail some level of violence or threat of violence including

property violence, as well as violence against people.

3. The perpetrators of the incidents must be subnational actors. The database does

not include acts of state terrorism.

Furthermore, at least two of the following three criteria must be present for an incident

to be included into the GTD [11]:

Criterion 1: The act must be aimed at attaining a political, economic, religious, or

social goal. In terms of economic goals, the exclusive pursuit of profit

does not satisfy this criterion. It must involve the pursuit of more

profound, systemic economic change.

Criterion 2: There must be evidence of an intention to coerce, intimidate, or con-

vey some other message to a larger audience (or audiences) than the

immediate victims. It is the act taken as a totality that is consid-

ered, irrespective if every individual involved in carrying out the act

was aware of this intention. As long as any of the planners or decision

makers behind the attack intended to coerce, intimidate or publicize,

the intentionality criterion is met.
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Criterion 3: The action must be outside the context of legitimate warfare activi-

ties. That is, the act must be outside the parameters permitted by

international humanitarian law (particularly the prohibition against

deliberately targeting civilians or non-combatants).

Vulnerability.

Haimes defines vulnerability as, “manifestation of the inherent states of the sys-

tem that can be exploited to adversely affect that system.” [12] This definition focuses

on vulnerability from a systems perspective, which is useful for determining the dif-

ferent components of terrorism production. However, the DoD outlines the following

definitions of vulnerability in DoD Instruction 2000.16: [13].

• In anti-terrorism, a situation or circumstance, which if left unchanged, may

result in the loss of life or damage to mission essential resources.

• The susceptibility of a nation or military force to any action by any means

through which its war fighting potential or combat effectiveness may be reduced

or will to fight diminished.

• The characteristics of a system that cause it to suffer a definite degradation

(incapability to perform the designated mission) as a result of having been

subjected to a certain level of effects in an unnatural (man-made) hostile envi-

ronment.

• The characteristics of an installation, system, asset, application, or its depen-

dencies that could cause it to suffer a degradation or loss (incapacity to perform

its designated function) as a result of having been subjected to a certain level

of threat or hazard.
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It is rather apparent, that the DoD definitions encompass Haimes definition for

vulnerability and is specific to anti-terrorism. Consequently, the DoD definition of

vulnerability is utilized throughout the remainder of the research.

2.2 Current Policy

It is vital to understand what is currently perceived about terrorism and the

current U.S. policy regarding modern terrorism and its accompanying threats. This

process begins with what the United States government is currently doing and the

anti-terrorism National Security Strategies. The United States government’s goal

in regards to terrorism, especially al-Qa’ida is to “disrupt, degrade, dismantle and

defeat” [4].

The plan of attack to achieve this goal is split into long term and short term

strategies. The long term strategy is “advancing freedom and human dignity through

effective democracy” [14]. The strategy uses democracy as a vessel for freedom and

human dignity and is directly related to four aspects of the United States’ beliefs

about terrorism. First, the U.S. believes terrorists derive from political alienation

within their own country. Democracy should aid this issue since every person has an

equal role in the government. Second, terrorist beliefs grow out of past grievances with

the government or other parties. Democracy settles disputes peacefully and orderly

within the legal system. Third, terrorists come from conspiracy and misinformation

subcultures and it is believed that freedom of speech allows them to hear the truth

as well as the misinformation giving the individual more choices. Fourth, terrorists

have an ideology that justifies murder. However, a respect for human dignity limits

a mind set like this from ever taking place [14].

The U.S. government also specifically states some attributes which are believed not

to promote terrorism. First, terrorism is not a result from a poverty mentality, which
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is supposedly based upon the information the U.S. currently has about terrorists.

Second, terrorism does not come from hostility to past U.S. policy, since the U.S.

is not the only target. Third, terrorists are not motivated by U.S.-Israeli relations,

because attacks were planned during the peace of the 1990’s. Lastly, terrorism is not

a response to U.S. offenses since we did not attack first [14].

The U.S. government’s short term strategy is broken into four sub-strategies [14]:

Strategy 1. Preventing attacks from terrorists by preemptively attacking their re-

sources, including leadership.

Strategy 2. Protecting the homeland by preventing entry of terrorists to the country

and defending likely targets in the country.

Strategy 3. Denying terrorists access to weapons of mass destruction.

Strategy 4. Deny terrorists control of any country and eliminate terrorist safe havens.

There are two defined tactics to obtain these four sub-strategies. First, depriving non-

state actors of funding, recruitment, information, and support (FRIS) [15]. Second,

the United States focuses on defending itself. Clearly, the short term sub-strategies

are basic defensive and offensive strategies of war and do not incorporate any specific

tactics related to terrorism.

To accomplish these terrorism goals, the United States will need to reconsider

strategy and incorporate all elements of its power, not only military elements. These

measures are commonly divided into four groups, diplomatic, information, military,

and economic (DIME model). The affect of the instruments of power are measured

by the impact to political, military, economic, social, information, and infrastructure

effects (PMESII) [15]. A major issue with these tools and effects are that they are

complex, have unpredictable effects and interactions, and have no way to measure

return on investment [15].
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2.3 Homeland Risk

The Department of Homeland Security (DHS) is one organization that the U.S

uses outside of military force to engage in counter-terrorism. DHS was created with

the mission of “preventing terrorist attacks, reducing vulnerability to such attacks,

and providing emergency response in the event of an attack.” [16] The DHS strives

to use risk assessment in order to better defend the nation through prevention and

reduced vulnerability. Risk is commonly defined by the risk triplet: scenario, the

probability of that scenario, and the consequences of that scenario [17].

Conducting a risk assessment of terrorism of this manner is an extremely difficult

task. First, simply defining a scenario is extremely difficult, because terrorists will

conduct any scenario that will meet their goals. To defend in this manner, one needs

an exhaustive list of scenarios [18]. With the enemy being able to make decisions and

able to react to any defensive move that the United States implements, creating an

exhaustive list of scenarios would be essentially impossible. For an exercise in scope,

the DHS was asked to compile a list of “critical assets” to defend the dispersion of

its budget to certain areas. The list had 77,069 entries [16]. Next, every potential

scenario would have to be applied to these “critical assets.” This task would be endless

if the scope were expanded to all possible targets.

The second portion of risk is calculating the probability of the scenario. Clearly,

this is problematic, since few successful attacks have been conducted in the U.S.

making scenario-specific probabilities difficult to calculate. Additionally, determining

the probability of a scenario is extremely difficult due to the terrorist’s ability to react,

the defenses that the United States puts in place, and factors outside of both parties’

control. Another suggestion is to replace the second portion of the risk triplet with

a degree of difficulty to successfully accomplish the scenario against the target under

consideration [19]. This degree of difficulty must take into account both terrorist
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beliefs and homeland defense for a defined scenario [19]. As mentioned above, this

is extremely difficult, but is much easier to calculate from the available data than a

probability of scenario [19].

The last portion of the risk triplet is determining the consequences, which also

requires a specified scenario and complex computations to compile accurate effects.

Additionally, computing accurate effects is exceptional difficult due to second, and

tertiary effects aside from the main effects. While fruitful attempts have been made

to quantify the risks of terrorism, the task is very difficult to put a quantitative for-

mula to human driven activities [20]. Risk analysis through these means is primarily

focused upon the consequences and the mitigation of these consequences instead of

the prevention of the attack.

Not only is the current counter-terrorism strategy at its core reactionary, it also

lacks effectiveness. A survey paper [10] dedicated to evaluating current counter ter-

rorism strategies came to the following conclusions. Despite billions of dollars spent

annually on counter-terrorism strategies, very little research has been conducted to

determine the effectiveness of these strategies. However, using the current available

research, no counter-terrorism strategy consistently reduces the number of terrorist

attacks. Using metal detectors caused a decreased number of skyjackings, but caused

an increased number of non-skyjacking terrorist attacks. Clearly, metal detectors did

not reduce the number of attacks, but instead displaced certain types of attacks. In

risk analysis, this displacement is known as risk transference and implies that no risk

is actually reduced. Additionally, fortifying embassies, protecting diplomats, higher

punishments for skyjacking, and United Nation resolutions all showed no effect on

the number of terrorist attacks. Furthermore, retaliation for terrorist attacks with

military force, raised the number of attacks, especially in the short term. Lastly,

having political parties that are intolerant of terrorist attacks increased the number
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of all types of terrorist attacks except for non-casualty attacks. The U.S. drastically

needs to change counter-terrorism tactics in order to be more effective, and this needs

to come from a better understanding of terrorism.

The DHS has made preliminary moves to better understand terrorist and have

decided to analyze simple risk indicators beyond the already described event-based

models for risk assessment [16]. These risk indicators do not use the current knowledge

of terrorist preferences and priorities to help prioritize targets to defend, but are an

attempt to look at the general types of targets that terrorists attack. The first metric

is the product of population and population density [16]. This shows that terrorists

prefer to target large population centers, which is concurrent with other research

stating that terrorist attacks are positively correlated with population [21, 22]. This

makes sense since terrorists aim to influence a population based upon fear and more

people will be fearful since more people will experience an attack and the media is

more likely to report a large attack. It is additionally interesting to note that modern

terrorists conceal themselves in cities and industrialized centers rather than rural

areas. Historically, insurgents would hide in rural areas away from people that are

able to detect them. However, changes in technology has made hiding in cities more

effective, especially when blending in with a sympathetic population. Additionally,

it puts insurgents right next to the individuals they are trying to “win” [2].

Another indicator that the DHS uses is the product of population, population

density, and sum of critical infrastructure elements [16]. It is not surprising that

terrorists are going to additionally focus on critical infrastructure elements, since this

increases the amount of people impacted by the attack, as well as the affect of the

attack itself. These indicators take the terrorist strategy into account and allows

the United States to better protect itself and are the beginning of a good defensive

strategy. However, since there are many population centers and critical infrastructure
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elements, more indicators should be identified in order to develop better defenses and

even more indicators are necessary to create a preventative strategy or predictive

model.

2.4 Similar Research

In the academic community, many scholars have attempted to determine relation-

ships between certain socio-economic country characteristics and terrorism, specifi-

cally where terrorists originate or target. Despite the amount of research, many socio-

economic characteristics remain unexplored or highly debated. In order to learn from

this previous research and understand current knowledge in the academic community,

similar academic research has been analyzed and summarized to include common

methodologies and current relationship beliefs about certain socio-economic country

characteristics and terrorist attacks.

Prominent Variable Relationships.

Carter’s Five Factors.

Terrorism has become a topic of study for many institutions, including those out-

side of the military and government. Interest has come from individuals in psychology,

sociology, economics, medical and engineering studies.

One approach to determine the kind of factors that contribute to a terrorist mind-

set or make countries vulnerable to a terrorist mindset is to analyze countries that

currently provide safe haven for terrorist networks or at least allow them to oper-

ate unabated. Carter [23] analyzed countries which harbor, willingly or unwillingly,

terrorist networks in the Middle East and the Horn of Africa. Carter qualitatively as-

sessed these countries to have five factors in common. These factors included poverty,

lack of border control, political corruption, fragile economies, and social fragmenta-
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tion [23]. It is important to note that these factors were not quantitatively assessed,

but rather based upon observation. However, each variable intuitively makes sense to

have a relationship with the number of terrorist attacks in a country and worthwhile

for further analysis.

The first factor is poverty. The aim of terrorism is to use fear to coerce the popu-

lation into joining and supporting their cause. Poverty allows terrorism to operate on

many levels. First, impoverished countries usually have impoverished governments

that are unable to provide the necessary services to deter terrorism. Second, impover-

ished countries have impoverished people that are more vulnerable to being recruited

by terrorist. Insurgents are no longer seeking money, but actually have financial

power to “win” the population [2].

The U.S. government agrees with the belief that terrorism is related to poverty

[4, 14]. However, the quantitative literature on the relationship between economics

and terrorists attacks, tell a much different story. GDP per capita and number of

terrorist attacks have shown to have a negative relationship in some quantitative

research based upon the belief that it is cheaper to attack impoverished people [21],

while other research shows a significant positive relationship based upon the belief

that terrorist want to target wealthier people, since more people will become aware

of the attack [24]. Additionally, other research has analyzed the non-linear terms as

well and shown that the relationship between GDP per capita and number of terrorist

attacks is actually a concave parabolic function as shown in Figure 1 [25, 22, 26]. One

reason for the difference in findings could be related to the difference in methodologies.

Li [21], which found a negative relationship, using a pooled time series approach,

while Street [24] came to the opposite conclusion with a Poisson panel estimation

based upon analyzing an attacks by where the home nation of the attackers, instead

of the actual location of the attack. However, this parabolic finding could further
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explain the differing results. The parabolic finding is further supported by three

different researchers with two different methodologies, zero-infalted negative binomial

regression [25, 26] and Poisson regression [22, 26], coming to the same conclusion.

Figure 1. Notionalized relationship between the number of terrorist attacks and GDP
per capita

Another method to evaluate poverty is based upon income inequality. This ap-

proach is based upon the belief that poverty is relative, individuals only feel impover-

ished in comparison to wealthy neighbors. Consequently, income inequality is another

interesting factor for analysis and has shown a positive relationship to the number of

terrorist attacks using a pooled time series approach [21].

The second factor is lack of border control. A country lacking border control

is related to a country lacking security means. A lack of border control provides

terrorists the means to easily and safely transport supplies, finances, and people,

making attacks easier and survival possible. A simple increase in border control could

be useful in inhibiting terrorists and increasing the cost of conducting attacks. While

there is little literature showing statistical quantitative support for border security,

Piazza [27] indicates strength of government as an important factor. From a failed

state perspective, the strength of the government is negatively correlated with number
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of terrorist attacks based upon a negative binomial regression model.

The third factor is political corruption. Once again, [27] Piazza shows a negative

relationship exists between corrupt governments and security necessary to prevent

terrorism. Additionally, a corrupt government does not have the support of its people

and the people do not feel like the government will protect them when necessary.

This relationship has some statistical support when analyzing from the failed state

perspective using negative binomial regression.

The fourth factor is fragile economies, which is related to poverty. However, the

fragility of the economy also makes the country more vulnerable to terrorist attacks,

since an attack will be so devastating that the country will have difficulty “bouncing

back” causing the effect of the attack to be much greater. Additionally, joining a

terrorist network could be the only form of a steady income for a family.

A direct measure of economic fragility is difficult to obtain. Proxies for the fragility

of economies could include the interaction with other economies or the globalization

of a nation. Conducting a pooled time series analysis, the interaction with other

economies and globalization were both shown to have a positive relationship with the

number of terrorist attacks [21]. However, analyzing non-linear terms showed a convex

parabolic relationship between international trade and the number of attacks as seen

in Figure 2 [25], it is important to note that this article focused on the nationalities of

people attacked instead of the country where the attack occurred, so further analysis

should be conducted. Utilizing a Poisson regression, openness to trade was found to

have a positive relationship with the number of terrorist attacks [22].

Another potential proxy for economic fragility is economic growth. Research has

shown that growth in real GDP is negatively correlated with terrorist attacks [22].

Coupling these results with the finding that in Africa, transnational terrorism has a

negative relationship with economic growth [5], shows that terrorism and economic
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Figure 2. Notionalized relationship between the number of terrorist attacks and amount
of international trade

growth create a negative feedback loop resulting in greater amount of terrorism and

lower levels of economic growth.

The final factor is social fragmentation. Social fragmentation is the splintering

of a country’s populace into distinct portions. Usually these portions are upset with

the government, when they under represented and consequently put down by the

government. When a terrorist group operates against the government, the people

who share their views (i.e. religious, cultural) are much more likely to support the

terrorists. This fragmentation is a common source of civil conflict and the presence of

civil conflict increases the quantity of terrorist attacks as well based upon a Poisson

panel estimation [24].

A case study of the Taliban supports the proposed realtionship between terrorism

and fragmentation [28]. In early 2006, the Taliban used the following five slogans

to gain members: 1. “Our party, the Taliban” 2. “Our people and nation, the

Pashtun” 3. “Our economy, the poppy” 4. “Our constitution, the Shari’a” 5. “Our

form of government, the emirate”. These slogans are used as “rallying calls” to gain

supporters. Clearly, the Taliban uses its propaganda to bring in people that want
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their own political party, their own ethnicity as a nation, that have been prevented

from making a living by growing poppies, from people agreeing with their religion,

and wanting a new government.

While this case study shows how terrorists have capitalized on fragmentation.

Poisson panel estimation analysis in regards to religion show that a larger percentage

of Christians or a larger percentage of Muslims in the population correspond to an

increased number of terrorist attacks [24]. However, Street also recorded that a larger

Jewish population resulted in less attacks, which likely occurred since the analysis only

looked at attacks for non-state actors. This analysis only focused on fragmentation

in terms of religion, but it is clear that further analysis on social fragmentation and

its potential relationship to terrorism is needed.

Review of Additional Variables.

The factors highlighted in Carter’s analysis need further quantitative investigation,

but the literature also contains other variables and relationships of note that will be

reviewed in this section.

The literature debates whether some variables have a relationship with terrorist

attacks. One of these highly contentious variables is the level of democracy in a coun-

try. The U.S. government has stated numerous times that an increase in democracy,

leads to a decrease in terrorism [4, 14]. However, a negative binomial regression re-

turned results that the level of democracy has no effect on the number of terrorist

attacks [27]. Li, using pooled time series, and Street, using Poisson panel analyses,

reported an increasing relationship with the number of terrorist attacks [21, 24].

Another potential reason for the opposing results could be that terrorism databases

usually access public media to record terrorist attacks, so a democratic country would

report these attacks more often than other types of governments. In order to deter-
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mine the underlying causes of democracy, Li breaks up democracy into numerous

representative factors [29]. Using a negative binomial regression, Li’s results showed

a positive relationship between freedom of the press, amount of government con-

straints, number of regime changes and the number of terrorist attacks. It is impor-

tant to note that freedom of the press was added to the model in order to account

for underreporting bias.

The vast majority of datasets recording terrorist attacks are based upon media

sources. Since countries with freedom of the press report more attacks than their

counterparts, adding freedom of the press to models to account for this underreport-

ing bias is a common tactic [30]. There was a negative relationship between voter

turnout, citizen satisfaction, electoral participation, and the number of terrorist at-

tacks. By breaking democracy into constituent components, Li provided insight to

what is truly going on with the relationship between democracy and terrorist attacks.

This approach could be used on some of the other debated variables in the literature

to display the underlying reasoning behind the results.

Since the DHS uses population density as an indicator for potential terrorists

attacks, the organization apparently expects more attacks to occur in cities than

anywhere else. It would be wise to further analyze cities if anything other than size

of the city is a factor related to terrorist attacks. Research shows that a city with

an aging infrastructure, such as roads and housing are more likely to have terrorist

attacks than their modern counterparts. Additionally, cities are more vulnerable

based upon the topographical location and layout of the city [31]. These indicators

show the kinds of targets that terrorists seek out whether consciously or unconsciously.

Lastly, location ended up being one of the major factors of determination between a

city that is vulnerable to an attack and a city that is relatively safe from an attack

[31]. This shows that very specific factors play a large role in terrorist attacks at the
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local level and it would be in the best interest of the DHS to identify more of these

factors. These indicators are very insightful, but are unhelpful in terms of analysis at

the country level.

The amount of education is another commonly analyzed factor. Street shows a

positive correlation between the number of terrorist attacks and the average years of

education achieved in a country, but goes on to comment that this is likely due to

the beliefs and principles of the school systems in the country [24]. Using a Poisson

regression instead of a panel regression, Street showed that education level has a

negative relationship with terrorism, except in Europe and Islamic countries were the

relationship is insignificant and positive, respectively [22]. This last analysis shows

the importance of analyzing the world by region.

Regional differences are important to consider when analyzing terrorism due to

various factors that differ from region to region (i.e. tactics, government, climate,

etc.). Analyzing only southeastern Turkey highlighted that an economy based upon

agriculture and government services have a relationship with the number of terrorist

attacks in the region [32]. Examining different geographic regions can also return

opposing results. For instance, level of investment and number of patents are nega-

tively correlated with terrorism in the entire world, but have a positive reelationship

in Islamic countries. Clearly, location is a very important factor which should be

analyzed to better understand terrorist attacks.

There is also a debate whether U.S. foreign policy has any relationship with ter-

rorism. The U.S. government states that no relationship exists [14], however another

study utilizing principle components analysis and factor analysis showed that an un-

popular U.S. foreign policy causes the U.S. to be a common driver of transnational

terrorism [33]. It is interesting to note that a positive relationship was found between

contributions to the U.N. budget of the victim country and the number of terrorist
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attacks using a zero-inflated negative binomial regression [25]. There is likely a re-

lationship between U.S. or coalition membership foreign policy and terrorist attacks.

As done previously with democracy, it may be beneficial to break up U.S. foreign

policy into its constituent properties to determine any hidden relationships.

After exploring these different variable relationships, our research will set out

on exploratory analysis to find additional variables and define their relationship to

terrorism.

Survey Paper Review.

An extensive research effort has been conducted to explore these relationships.

However, the size of this research has grossly out scaled consolidation efforts to com-

pile all of this research into a simple form. The most recent consolidation efforts

include a survey paper titled “What causes terrorism?”, by Krieger and Meierrieks

[34], and another working paper titled “Lock, stock and barrel: A comprehensive

assessment of the determinants of terror” [1]. While these papers are very detailed

and thorough in their consolidation efforts, there is room for improvement. First,

the newest paper analyzed is from the year 2011 and this is only one paper. This

means that a lot of recent research on terrorism has not been considered and addi-

tional consolidation should occur to update the consolidation. Second, neither paper

focuses upon the quantitative methods used to capture these relationships. There-

fore, this paper will first summarize the findings in these two survey papers. Then,

an assessment of recent literature will be conducted to update these consolidation

efforts. Lastly, a literature assessment of methodologies used to find the relationships

between variables and terrorist attacks will be assessed and compiled.
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“What causes terrorism?”.

Krieger and Meierrieks are two respected names in terrorism research and have

multiple publications in the area. This survey paper was published in 2011, but only

contains sources from 2010 and before. However, this paper references 96 other papers

and consolidates their findings into four areas. These four areas include sources of

transnational terrorism, targets of transnational terrorism, domestic terrorism, and

research that does not specify the type of terrorism [34]. In may variable relationships,

research comes to different conclusions. This paper specifies economic deprivation,

modernization strain, political and institutional order, political transformation and

instability, identity and culture clash, global economic and public order, and conta-

gion. The authors explain the different findings in the research with the following five

reasons:

1. Different dependent variables

2. Different data sources (ITERATE, MIPT, RAND)

3. Different time periods

4. Different exploratory variables

5. Different methodologies

Despite all of these reasons for debate among variable relationships, the survey

paper found a few synonymous findings. Most of these findings occur because only

one paper analyzed the specific variable. In regards to being sources of terrorism,

some of these relationship include a positive relationship in regards to unequal al-

liances in power and a negative relationship in regards to World Trade Organization

membership. Two researchers agreed that receiving foreign aid decreases being a

source of terrorism.

23



In regards to being a target of terrorism, one article confirms a positive rela-

tionship with being in recession, youth burden, population density, illiteracy, new

democracies, unfair balance of trade, and linguistic diversity. Two or more findings

included a negative relationship for income inequality and regime stability and a

positive relationship with state failure.

In unspecified terrorism, more than three articles agreed that contagion, or lagged

autoregressive term, promotes terrorist attacks both temporally and spatially. Addi-

tionally, it is important to note that fourteen articles agreed that population has a

positive effect on terrorism, but one paper came to the opposite conclusion.

“Lock, stock and barrel: A comprehensive assessment of the deter-

minants of terror”.

Gassebner and Luechinger’s paper entitled “Lock, Stock, and Barrel: A com-

prehensive assessment of the determinants of terror” is a much more comprehensive

survey of modern literature [1]. However, this is a working paper from 2011 and only

references one paper from that year. The other 107 referenced articles were written

before 2011. This paper breaks up terrorism into three categories of analysis: analysis

based upon where the attacks occurred, analysis based upon the targets, or victims,

of the attack, and analysis on the perpetrators of the attack. This review of the

literature produced 65 correlates that were re-assessed for robustness. These vari-

ables were re-assessed using Extreme Bound Analysis, which compares ”commonly

accepted” variables to variables of interest. The ”commonly accepted” variables in-

clude GDP per capita, population size and level of democracy, since these are the most

commonly analyzed variables in the literature. The authors recorded the percentage

of regressions where the variables of interest were significantly different zero to assess

robustness. Robustness is defined as scoring above a 90% and this robustness score
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is checked for the three common data sources (MIPT, ITERATE, and GTD) and

variants of these datasets related to aspects of terrorism.

Due to the comprehensive assessment, this paper has many results of interest.

First, the degree of democracy and GDP per capita are not robustly associated with

terrorism. This result is very interesting since so much research disputes these specific

variables. Second, the authors found 18 variables that are robust based upon location

of the attack, 15 associated with the targets of the attack, and 6 related to the

perpetrators of the attack. Of the 18 variables based upon location only physical

integrity rights and religious tension are robust for all three data sources with a

negative and positive relationship, respectively. Population size, economic freedom

and infant mortality rate came to the same conclusion for two of the data sets. These

results as well as the other 13 robust variables can be found in Table 1.

For the analysis focused on the victims and perpetrators of terrorism, economic

freedom (negative relationship), physical integrity rights (negative relationship), and

having an internal war supported by external countries (positive relationship) all come

to the same conclusion for all three data sets. The results of this analysis can be seen

in Table 2.

While these papers do provide a broad overview of terrorism literature, they do

not capture more recent research, since they were both written in 2011. Consequently,

a broad overview on some articles that were not included in these survey papers will

be conducted.

Methodologies to find relationships between characteristics and terror-

ist attacks.

Within the terrorism analysis literature, many different methodologies are used

from systems thinking to game theory and from comparisons of means to multivariate
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Table 1. Lock, Stock, and Barrel: results of location focused EBA analysis [1]
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Table 2. Lock, Stock, and Barrel: results of victim and perpetrator focused EBA
analysis [1]
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techniques. Since different methodologies can lead to different conclusions, the topic

of methodologies is very important. The research questions laid out in Section 1.3 can

be answered using a variety of strategies. By analyzing the methodologies of others,

it is possible to determine what works well, what may not work, and other strategies

to overcome common problems.

One of these techniques is to analyze the interaction between the United States

and terrorists through game theory, which helps to capture the action and reaction

of the players [18]. While conducting this analysis certainly is a step in the right

direction, this does not fix the previously mentioned problems of being unable to

determine every scenario and the likelihood of that scenario. Furthermore, classical

game theory is difficult to apply to this problem because the desired outcomes of

terrorists and the U.S. government greatly differ from each other. Additionally, the

utilities and objectives are very different for different types of terrorist groups. For

instance, a nuclear attack on American soil has a greater benefit for al-Qa’ida than

a disgruntled American [18]. The changes in tactics by an intelligent adversary, the

changing political and economic environments as well as new and changing sources

of intelligence make it difficult to apply game theory to terrorist attacks. However,

game theory analysis does attempt to take the current knowledge about terrorism

and apply it to U.S. strategy, so it is a step in the right direction.

Another method is to use a systems thinking based approach. Schoenenberger

et. al. [35] used this approach to analyze terrorism as a system and compartmental-

ized it into recruitment, impact of attack, media, resources, and a negative view of

industrialized nations [35]. This approach has advantages, especially in determining

portions of the system to infiltrate. However, it lacks the quantitative rigor neces-

sary to determine which relationships will provide insight into the terrorist choices in

targets.
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Since this research is based upon the relationships between certain country charac-

teristics and the total number of terrorist attacks, multivariate techniques can aid in

discovering underlying patterns in historical terrorist attacks. However, even within

multivariate techniques, many potential options exist and are applicable to this prob-

lem. Some of the methodologies currently analyzed in the literature include negative

binomial or Poisson regression techniques, both with and without the zero-inflated

specification, benchmark analysis using logit or probit models, classification trees,

and principle components analysis.

Due to the nature of the data, many individuals have not used a simple linear

regression technique. However, many other regression techniques have been used. One

potential methodology is to use a negative binomial regression [27, 29]. Additionally,

some researchers’ data on terrorist attacks contained a large number of zeros, causing

them to conduct a zero-inflated negative binomial regression [25, 36]. While the

negative binomial regression is the most common technique, others various regression

techniques have been used including a pooled time series regression [21], a cross-

sectional time series regression [30], a mixed effects Poisson regression model [22, 37],

or a Poisson panel estimation [24].

A benchmark analysis is another potential regression technique. In order to assess

urban vulnerability to terrorist attacks, a model was created that was able to deter-

mine cities with a vulnerability above 50%, which would be a very useful tool for the

DHS [31]. For this specific model, having a vulnerability above 50% means that at

least one terrorist attack is likely to occur in the city. Other researchers have used

this same benchmark, but have used logit and probit models to determine whether

an attack is likely to occur in a specified region [32, 37].

Classification trees, similar to the benchmark analysis, seek cutoff points among

variables. Depending on the analysis, being on one end of this cutoff describes the
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Table 3. Summary of Literature Review by Methodology

expected relationship with terrorist attacks. A classification tree was conducted based

upon terrorist attacks and their relationship to the type, strength, and stability of a

government [38]

Principal Component Analysis (PCA) is helpful in determining important rela-

tionships between variables and the number of terrorist attacks. This technique was

used to identify the important socio-economic characteristics that have a relationship

with terrorist attacks in Southeast Turkey [32]. Additionally, this technique was cou-

pled with factor analysis to determine which countries are drivers of transnational

terrorism; terrorist activity in one or more countries serve as an indicator of terrorist

attacks at the global scale [33].

Table 3 summarizes the findings from the Gassebner and Luechinger survey paper

and additional studies from this literature review by methodology [1].

Clearly, the negative binomial is the standard for most analyses with well over

50% of the surveyed articles, but simply being used more does not mean it is the

most accurate model. The second most common model is the Tobit model, which

analyzes censored data; it is important to note that all eight articles include the

author S.B. Bloomberg [1]. Seven individuals used an ordinary least squares analysis

approach. It is interesting to note that many researchers conclude that the data

is not normally distributed and is not continuous since it is count data. If this is

true, both the Tobit and OLS models are inadequate techniques, since they both
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demand that errors are normally distributed with constant variance and a mean of

zero. Three articles also conducted a logistic model. This is a sensible technique,

but demands that a specified cutoff be used in the analysis. This cutoff could be a

specified number of attacks or whether or not attacks occur. Since the data suffers

from underreporting bias [30], it can be difficult to determine which numbers are truly

zero or truly small, and therefore, choosing a cutoff can be a very difficult process.

Additionally, this methodology does not predict the quantity of terrorist attacks. The

last commonly used methodology is mean comparison. This technique is very basic

and is fundementally used in almost all of the other common techniques.

Clearly, using the negative binomial regression is the most common technique used

in the literature analysis of terrorist attacks with socio-economic variables. The fact

that so many different researchers used the same methodology helps to validate the

methodology, but this does not mean it is the most appropiate methodology. It is

also important to note that the count for negative binomial does not specify between

the standard negative binomial distribution and the zero-inflated adaptation. These

last two points show the importance of conducting data specific analysis to determine

the most appropiate technique.

2.5 Model Selection Metrics

The performance of models, is gauged using certain metrics and statistical tests.

Through these metrics and statistical tests, it is possible to compare and contrast

different models to determine the best model.
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Metrics.

Akaike Information Criterion.

The first metric commonly used for model selection is Akaike Information Criterion

(AIC). This metric balances how well a model fits the data with model complexity,

measured by the number of independent variables. The metric is based upon Equation

1,

AIC = −2 ln(L) + 2k (1)

where k is the number of parameters in the model and L is the maximized value for

the likelihood function [39]. A likelihood function is based upon information theory

and uses known outcome data to evaluate the relationship with independent data [40].

The log of the maximum of the likelihood function, which is commonly referred to as

the log-likelihood, simply scales the maximum value to allow for simpler derivation.

As seen above, the log-likelihood is multipled by negative two, while the number of

parameters is multiplied by positive two. Since a better model has a large likelihood

with fewer parameters, the better model has the lower value for AIC. This metric

only has an interpretation relative to another model’s metric.

Bayesian Information Criterion.

The second metric for model comparison is Bayesian Information Criteria (BIC).

Similar to AIC, BIC balances model fit and complexity, but instead is based upon

Equation 2,

BIC = −2 ln(L) + ln(n)k (2)

where k is the number of parameters in the model and L is the maximized value for
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the likelihood function just like AIC. The only difference between the two is k, the

number of parameters, is multiplied by the natural log of n, which is the data sample

size. Consequently, BIC gives more weight to model complexity relative to AIC as

long as there are more than seven data points. Just like AIC, the metric for BIC

must be compared relative to another model’s BIC calculation and the better model

has a smaller BIC.

Root Mean Square Error.

Another commonly used metric for model comparison is the root mean square

error. In regression, errors are synomous with a term referred to as a residual. Both

of these terms simply mean the difference between the prediction by the model and

the actual data. In order to assess the performance of a model, these errors are

commonly squared, to account for negatives and provide heavier weight to missed

data, and then summed into one metric. This one number is referred to as the sum of

square error (SSE). This number provides worse results for problems with more data

points, since their will be more error terms. Consequently, it is common to divide

SSE by the number of data points to get mean square error (MSE). Since the errors

were squared, the units for MSE are also squared. Consequently, it is common to take

the square root of the MSE to put units into easily interpretable terms. This metric

is called the RMSE and is the same calculation as the sample standard deviation. It

can be seen in Equation 3.

RMSE =

√∑n
t=1(ŷt − y)2

n
(3)

There are a few different applications of RMSE which relay different information

about the model. First, there is an RMSE based upon model fit. The RMSE based

upon model fit comes from the data used to build the model. This RMSE is con-
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structed to have the smallest SSE, because the model is built to have the smallest

error terms. When RMSE is calculated on validation data that was not used to create

the model, this metric really assesses the robustness and appropriateness of the model

in application to data outside of the sample used to construct the model. When the

RMSE is used in a cross-validation, the RMSE really addresses the predictive power

of the model, since the validation data is coming from a test set of data.

Log-likelihood Test.

While it is common to compare different metrics across model, there are also

instances when hypothesis testing can be used to determine the most appropriate

model. One of these hypothesis tests is the log-likelihood test. This test assesses two

models where one model is nested inside of the other. These models are compared

to see if the additional parameters are necessary to explain a difference in variation.

The hypothesis test has the following format:

Null Hypothesis: The simpler model is appropriate

Alternative Hypothesis: The general model is appropriate

The test statistic is distributed χ2, where the degrees of freedom is equivalent to

the difference in the number of parameters between the two models. This statistic is

easily turned into a p-value to determine which model is more appropriate.

Cross-Validation.

Finding relationships between specific variables and terrorist attacks is useful to

better understanding terrorist attacks, but in order for this information to be useful

and not by chance correlated, these relationships must have predictive power. Finding

relationships with predictive power, provides a gateway to shaping policies that affect

the variable, and consequently, affect terrorism.
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In order to evaluate predictive power of any model, we must first fit the model, then

make a prediction and finally estimate the prediction error. “The most widely used

method for estimating prediction error is cross-validation” [41]. Validation, involves

a subset of the data used to evaluate the predictive capability of the model. However,

when data are scarce, another validation techniques is k-fold cross-validation.

K-fold cross-validation splits the data into k independent portions. A model is

constructed based upon all of the portions except one, and that last portion of the

data is used for validation. This process continues until all portions of the data have

been used for validation. The value used for k should be chosen carefully, as this

value balances the amount of variance and bias in the model. If k is equivalent to the

number of data points, this technique is called a leave-one-out cross-validation and

minimizes bias, while having the most variance between the k validations [41].

One large challenge with k-fold cross-validation is that the data must be split into

k independent portions. This is impossible to do when the data are dependent upon

each other as it usually is in most time-based prediction scenerios. In order to cope

with this issue, it is common to use another technique called blocked cross-validation.

Blocked Cross-Validation.

Blocked cross-validation divides the data into identically distributed, but not in-

dependent blocks [42]. In time-based models, these blocks are usually one or more

time steps. The first block is used to build a model, which is validated with the second

block. Then both of these blocks are used to build a model that validates the third

block. This process continues until the final block of data is validated. This technique

produces predictive errors at every time step, in order to analyze the predicitve power

of the model.
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III. Confirmatory Analysis

3.1 Overview

This chapter investigates the first research question from Section 1.3:

• Can the qualitative relationships considered indicators of terrorism be quanti-

tatively supported with a generalized linear model?

3.2 Data Collection

The charachteristics of terrorism outlined in “Pre-incident Indicators of Terrorist

Attacks: Weak Economies and Fragile Political Infrastructure Bring Rise to Terrorist

Organizations and Global Networks”, by Carter, is quantitatively assessed in this

chapter. This article identified five indicators that claim to serve as pre-incident

indicators of terrorism and are summarized in Section 2.4. It is important to note that

Carter’s analysis draws on social science literature. This chapter statistically tests

the indicators indentified by Carter, to see if they can be quantitatively supported.

To quantitatively support the findings in Carter’s article, we use data that accurately

depicts modern day terrorist attacks and data that accurately represents Carter’s five

factors.

Terrorism Data.

The data representing terrorist attacks came from the Global Terrorism Database

(GTD), maintained by the National Consortium for the Study of Terrorism and Re-

sponses to Terrorism (START). This database contains a list of terrorist attacks

dating back to 1970. To be considered a terrorist attack, an event must meet the

inclusion criteria for the GTD. This inclusion criteria is based on the consortium’s

definition of terrorism, which can be found in Section 2.1.

36



This data was collected using an extensive review of publicly available, unclassi-

fied, open source materials. These materials include media articles, electronic news

articles, existing data sets, books, journals, and legal documents [11]. Only events

that meet the aforementioned inclusion criteria are recorded as terrorist attacks in

the GTD.

For this research, the event data was the aggregated number of terrorist attacks

occurring in a year (1 Jan to 31 Dec) for each African country.

Factor Data.

Data is needed to evaluate Carter’s five factors. Since Carter’s factors reference

concepts and ideas instead of quantitative measurements, each factor is represented

by a proxy variable. The source and selection processes for these proxy variables are

described below.

Poverty.

Poverty is commonly analyzed in terrorism research using GDP per capita as

a proxy variable. Despite the common use of GDP per capita, it is a poor proxy

for poverty, especially when better alternatives are available. GDP per capita does

not describe as much about poverty as it does the ratio of economic output to the

population. Additionally, GDP per capita does not state anything about the actual

spread of the country’s wealth, but assumes that it is equal. Past research found the

Gini Index, which measures income inequality, statistically significant, the assumption

of equal distribution of wealth is unlikely to be valid. The Gini Index does not measure

poverty, but income inequality, and therefore, is a poor proxy for Carter’s definition.

The proxy variable for poverty used is the percentage of people living below a $2

a day poverty line. This indicator choice is believed to better represent true poverty
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and provides an equivalent cutoff for all countries. An alternative could be to use the

national poverty line, but it is inconsistent from country to country. This data came

from the World Bank.

Lack of Border Control.

There are no intuitive databases describing border security between countries in

Africa, especially as assessment that changed over time. Consideration was given

to analyzing migration rates, tariff rates, and even illegal drug or arms trade data

were considered as potential proxy variables. However, all of these data sets were

unreliable, not readily accessible, or did not truly represent border control as a proxy

variable.

The Fragile State Index ranks countries to determine which countries are weak

or failing. In order to do this they “convert millions of pieces of information into a

form that is relevant as well as easily digestible and informative [43].” These millions

of pieces of information are quantified into over one hundred sub-indicators, which

are aggregated to 12 main indicators, which are once again aggregated to form the

overall country score. These 12 main indicators examine social, economic, political,

and military examples including uneven economic development, external intervention,

and public services to name a few [43].

The security apparatus indicator measures the “extent to which the social contract

is weakened by competing groups, which is a proxy measure of security in a country

[43]. While this indicator does not speak to border control, every border is shared

by two or more countries. By looking at the surrounding countries, more insight into

border control is provided. Therefore, the indicator for border security is the sum

product of the bordering country’s security apparatus score and the percentage of

border shared with that country. For example, the United States score would be the
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security apparatus score for Canada multiplied by the percent of land border shared

with Canada plus the security apparatus score for Mexico multiplied by the percent

of land border shared with Mexico.

Political Corruption.

The proxy for political corruption comes from state legitimacy indicator of the

Fragile State Index. State legitimacy measures the“corruption and lack of represen-

tativeness in the government” [43].

Economic Fragility.

A proxy for economic fragility is the economic vulnerability index built by the

United Nations and Ferdi. This index measures the “structural vulnerability of coun-

tries to exogenous economic and environmental shocks” [44]. This proxy better ap-

proximates economic fragility as opposed to other proxies such as integration into

global economy, international trade, or GDP. Consequently, it more adequately rep-

resents economic fragility.

Social Fragmentation.

The proxy for social fragmentation comes from group grievance indicator of the

Fragile State Index. Group grievance measures the “tension and violence exists be-

tween groups” [43]. The benefit of using this index as opposed to other indicators

is that this measure includes ethnic, religious, and power fragmentation, instead of

focusing on one type of fragmentation.

3.3 Data Treatment

All collected data were processed prior to analysis.
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Missing Data.

Data was specifically chosen for its availability. However, some of the five factor

data contained missing values. These missing values were a result of the Fragile State

Index not evaluating the country or from World Bank and the United Nations not

collecting or reporting data every year.

In order to fill these missing values, the k nearest neighbors data imputation tech-

nique was used. This technique looks across the multivariate space at the statistically

closest data points to the missing data point based upon Mahalanobis distance. The

missing data point is estimated based upon a weighted average of a specified num-

ber of points. This analysis used the ten closest points for data imputation, k=10,

which is commonly used and the default for the “impute” package in R. Only two

independent variables, EVI and poverty, were missing values. EVI had 49 missing

data points, which is about a 15% of the data. However, poverty was missing ap-

proximately 80% of the data points. Since both variables were related to economic

condition of the country, GDP per capita was temporarily appended to the dataset

in order to have more accurate imputations based upon economic data and then re-

moved before analysis. This technique successfully filled the data set with reasonable

values allowing the analysis to continue unabated.

Data Standardization.

Lastly, the data was standardized to simplify comparisons. Additionally, stan-

dardizing and mean-correcting help address potential multicollinearity issues within

the data. Consequently, the data was both mean differenced and corrected for vari-

ance.
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3.4 Scope and Assumptions

This section outlines both the assumptions and scope of the problem.

Analysis of Africa.

Much research has been conducted on terrorism at the global level and at the

small regional level such as south-eastern Turkey and specific states within the U.S.

Conducting research at the global level does not find relationships that are specific to

a region. Some research has attempted to use dummy variables to find these regional

trends; however, using a dummy variable does not account for the effect of each

growth determinant [5]. Conducting analysis at the regional level provides specific

relationships, but is not robust to general trends or applicable to a large area. For

the reasons outlined in Section 1.2, the continent of Africa was the clear choice for

this analysis.

Country Removal.

Currently, Africa contains 53 countries including the surrounding islands. The

country of South Sudan came into existence in 2011 and was removed from the dataset

due to a lack of data for both the dependent and independent variables. For this study

Sudan and South Sudan are aggregated for both independent and dependent data.

South Sudan is used seperately in the analysis when calculating spatial variables, such

as border security, for its bordering countries. Future analysis should include South

Sudan as an independent country due to its lack of stability based upon being the

most fragile state in 2014 [43]. Additionally, some states are very small based upon

population. Further examination of these countries shows that the majority of them

do not have an autonomous government or are in heavily disputed territory. In order

to reduce the effect of the analysis being dependent upon countries outside of Africa
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or issues related to small population, all countries with current populations less than

a million are removed except for Djibouti. Since Djibouti is strategically significant

to the United States, has an autonomous government, and is the closest country to

the million population cutoff, it is retained in the model. This results in 49 African

countries in the analysis.

Analysis Time Period.

Lastly, it is important to define the time period that the analysis will span. The

GTD contains event data back to February 1968 to 2013, except for the year 1993.

However, terrorism has drastically changed over this time period. David Kilcullen

stated that modern terrorists differ significantly in “policy, strategy, operational art,

and tactical technique,” as well as wealth and urbanization compared to past terrorist

organizations [2]. To get an accurate depiction of modern terrorism, it is important

to analyze terrorism in recent times. Since this analysis is focused upon Africa, it is

vital to analyze factors which shape terrorism in Africa. Two large events occurred in

2007 that caused a shift in Africa and in terrorism across the continent. In February

2007, the AFRICOM combat command was created, showing increased U.S. interest

in Africa [6]. Also in 2007, the U.S. troop surge in Iraq supporting operation eduring

freedom and operation Iraqi freedom was implemented. This increase of troops was

viewed by many as successful in dealing with terrorism based upon a decrease in U.S.

troop fatalities and terrorist attacks in Iraq. This means that terrorists were either

placed on the defensive or escaped to other countries. Either way, this event effected

terrorism on both a global and regional scale. Due to these events and the desire to

analyze recent terrorism, the analysis time period will go from 1 Jan 2007 until 31

Dec 2013.
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3.5 Methodology

Model Types.

While methodology among terrorism studies ranges from systems thinking [35] to

Principal Component Analysis [5, 32], many researchers choose to conduct regression

techniques. Within regression techniques, researchers commonly use a Poisson, a

negative binomial, or a zero-inflated negative binomial regression, with the negative

binomial regressions being the most popular [1]. A negative binomial regression is

very similar to linear regression. However, instead of assuming that the residuals are

normally distributed, the assumption is that the residuals are negatively binomially

distributed. This means that the probability mass function is defined by Equation 4

[45],

Pr(X = k) =

(
r

r + µ

)r
Γ(r + k)

k! Γ(r)

(
µ

r + µ

)k
for k = 0, 1, 2, . . . (4)

where µ is the mean, µ+ µ2

r
is the variance, and r is the dispersion parameter. Unlike

a Poisson regression model, the mean is not equivalent to the variance for the negative

binomial, which is mainly driven by the dispersion parameter. For this data, µ=16

and σ2=3,250 The dispersion parameter is calculated with the Iteratively Reweighted

Least Squares (IRLS) algorithm. This algorithm finds the maximum likelihood es-

timates of a glm by iteratively solving a weighted least squares problem to find the

dispersion parameter. The independent data is assumed to be independent from each

other, which was confirmed by VIF scores less than 5, before mean-correcting the

data. The incident, or dependent, data is assumed to be approximately stationary;

meaning the variance between years is relatively low. Additionally, the dependent

data in a negative binomial regression is log-linked to the independent data, which is

equivalent to conducting a log transformation upon the model.
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There are also zero-inflated versions of the Poisson and negative binomial regres-

sions. These regressions are the same as the basic regressions, but add a logistic

regression which splits the data into zero and non-zero values. This remedies regres-

sion errors due to excessive zeros. A histogram of the distribution of terrorist attacks

can be seen in Figure 3. Clearly, the data contains numerous zeros, however, it is

unclear if the amount of zeros demands the zero-inflated negative binomial or if the

standard negative binomial distribution captures this quantity of zeros.

Figure 3. Occurence histogram of annual terrorist attacks

Model Evaluation.

Table 4 shows the results of the negative binomial regression using a full model, the

zero-inflated negative binomial regression, a Poisson regression and the zero-inflated

Poisson regression. The metrics in this table are described in Section 2.5.

Based upon AIC, the negative binomial regressions drastically outperform the

Poisson models. BIC cannot be calculated for zero-inflated models, but these results
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Table 4. Model comparisons among methodologies

once again show the negative binomial outperforming the Poisson regression. Lastly,

in regards to the RMSE, the zero-inflated models perform poorly relative to the

models without the zero-inflated portion. From an initial overall perspective, the

negative binomial model seems to outperform the two Poisson models in terms of

AIC, while it outperforms the two zero-inflated models from the RMSE perspective.

There are many reasons why some researchers have chosen to include the zero-

inflated portion of the regression, while others have foregone it. Some of these reasons

include knowledge of the zero-inflated portion and differences in the actual data set

used. As the distribution previously showed, the data contains many zeros, but a

comparison of both regression techniques must be conducted to determine if the data

is truly zero-inflated.

In comparing the negative binomial (NB) regression to its zero-inflated counter-

part, the zero-inflated negative binomial (ZINB) has a slightly lower AIC indicating

a slightly better fitting model. However, analyzing the RMSE clearly shows the NB

dominant to the ZINB; indicating NB is the better prediction model. Consequently,

the data are best regressed upon using the negative binomial regression. This is likely

due to the more recent time frame of this analysis in contrast to other research in

the field. Since 1996, the average number of terrorist attacks has increased more

than six-fold at the global level [3]. Also, this analysis has a lower proportion of

zeros than other research which commonly analyze terrorism as far back as 1968.

Additionally, since the analysis only looks at countries in Africa in contrast to the
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entire world. African countries may be less likely to report zero terrorist attacks than

other countries around the world due to the lack of media control and the amount

of foreign intervention. This causes less zero values in the data. While including

the zero-inflated portion may be appropriate with other data sets, inclusion with this

prediction model and variables did not yield the best results. Therefore, a negative

binomial regression is used to analyze the data.

Results.

The results of the negative binomial regression are seen in Table 5. It is important

to note that the inverse of the dispersion parameter, r, is represented by θ in the table.

It’s signifigance shows that the data is over-dispersed and the Negative Binomial is

more appropiate than the Poisson regression.

When using regression techniques, it can be very difficult to differentiate between

correlation and causation. This research is focused upon factors which can act as

indicators of terrorism. In order to better analyze this relationship, each of the

independent variables is lagged one year. For instance, terrorist attacks in 2007

are regressed on factor data from 2006. Therefore, the time for analyzing terrorist

attacks will be from 2007 to 2013, but the independent variables will range from 2006

to 2012. This table shows all model factors with the exception of poverty significant

at α=.05. This shows that economic vulnerability, border security, fragmentation,

and corruption are significant indicators of terrorism vulnerability.

3.6 Model Robustness

This model is also compared to the same model removing one factor at a time.

These results are in Table 6. The best two models are retaining all factors and

retaining all factors except for poverty. These two models have relatively equivalent
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Table 5. Negative Binomial Regression Results

Dependent variable:

yterr

EVI −0.361∗∗

(0.143)

Border.Security 0.402∗∗

(0.164)

Fragmented 1.207∗∗∗

(0.158)

Corruption 0.401∗∗

(0.160)

Poverty.percent.below.2USD −0.169
(0.133)

Constant 1.661∗∗∗

(0.130)

Observations 343
Log Likelihood −797.135
θ 0.197∗∗∗ (0.019)
Akaike Inf. Crit. 1,606.270

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6. Model comparisons witholding variables

performance, but it interesting to note that a log-likelihood test, addressed in Section

2.5, recommended the model without poverty with a p-value of 0.366.

As seen in Table 5, poverty does not have a significant relationship with the

number of terrorist attacks. In the literature, much debate exists over whether or

not a relationship exists between poverty and terrorism. However, those who do find

a relationship, usually conclude that the relationship is small, so it is not surprising

that poverty was not found to be a significant indicator of terrorism.

Interestingly, economic fragility appears to have a negative relationship with the

number of terrorist attacks which is significant at α = .05. This disagrees with

Carter’s explanation, which could be attributed to the use of a proxy variable. We

believe this relationship occurs due to more stable, less fragile, economies serve as

targets on the African continent.

Additionally, the proxy variables based upon the Fragile State Index are all sta-

tistically significant. It is important to remember that the higher component score

on the Fragile State Index indicates higher fragility. Therefore, lack of border con-

trol has a significantly positive relationship with the number of terrorist attacks at

α = .05. This makes intuitive sense, but is the first time this relationship has been

quantitatively supported. As fragmentation increases, the number of terrorist attacks
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Table 7. Blocked cross-validation root mean square error results

significantly increase at α = .01. This also makes sense and agrees with the current

literature. A similar relationship exists between corruption and the number of terror-

ist attacks except this relationship is only significant at α = .05. This relationship is

also intuitive and is supported in the literature as well.

3.7 Blocked Cross-Validation

As mentioned in Section 2.5, blocked cross-validation provides a systematic method

to measure prediction error when data are both dependent and scarce. Therefore, a

blocked cross-validation was conducted using years as the blocks. First, this analysis

was conducted using the full model. Then, one of the five variables was removed and

the blocked cross-validation was reconducted in order to see the difference in models

using a subset of the variables. The results are in Table 7.

As expected, removing the variables with highly significant relationships causes an

increase in RMSE, while removing weak relationships does not have a drastic impact

on RMSE. For instance, removing fragmentation causes an increase in RMSE, while

removing poverty improves the predictive power of the model.

Overtime, the model clearly loses predictive power as the RMSEs for 2012 and

2013 are drastically higher than in earlier years. Since blocked cross-validation builds
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the full model in time increments, a truly predictive model would exhibit a decrease

in RMSE or at least RMSE would remain relatively the same as more time increments

are included. Since the cross-validation RMSEs drastically increase after 2011, this

model lacks predictive power. Additionally, a RMSE is interpreted to provide a rough

range of prediction. Even the smallest RMSE values are greater than 20 and the

largest exceed 90 terrorist attacks per country per year. In regards to this problem,

over or under predicting the annual number of terrorist attacks for a single country

by 50 attacks can have drastic consequences and these problems only become worse

as the RMSE increases.

There are a few potential reasons for this lack in predictive capability. First,

it is important to recall that proxies for Carter’s five factors were analyzed, since

the idealogical concepts could not be quantitatively tested. Second, Carter’s factors

come from an analysis of countries on the Arabian peninsula and the horn of Africa,

while this paper looks at Africa collectively. Third, while many of Carter’s factors

were useful in predicting terrorism, there are likely to be additional variables that

can improve the predictive capability. Regardless, this model lacks predictive power,

especially to an extent for countries to adequately prepare for the upcoming year.

An accurate predictive model is important as decisions are made on where to focus

military aid, diplomatic attention, and other resources to counter the terrorism threat

in Africa. Therefore, the other research questions will be addressed with the hope of

improving the predictive power of the model.

3.8 Conclusion

Except for poverty, Carter’s five factors appear to be significant indicators of

terrorist attacks. This successfully answers the first question posed in Section 1.3.

However, it is important to note that this model lacks predictive power, as the pre-
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dictions have a large error range. Therefore, it is now important to answer the other

research questions and explore or further examine new and existing factors and their

potential relationships with the number of terrorist attacks in Chapter 4. This anal-

ysis seeks greater insight into terrorism in Africa yielding a more accurate predictive

model.
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IV. Exploratory Analysis

4.1 Overview

This chapter answers the second proposed research question from Section 1.3:

• Can other potential indicators of terrorism be quantitatively explored and sup-

ported with a generalized linear model?

Similar to Chapter III, data collection and data treatment are conducted. The

scope, assumptions, and methodology remain the same for this analysis in order to

maintain consistency. Next, the analysis is conducted including a time blocked cross-

validation to measure predictive power.

4.2 Data Collection

To explore other potential indicators of terrorism, data that accurately describes

these indicators are found and aggregated. This section details the selected indicators,

the chosen proxy variables, and their data sources. As described in Section 3.3, the

missing data are filled using the k-nearest neighbors imputation method and then the

independent data are mean-corrected and standardized.

Population.

A survey paper written by Krieger and Meierrieks [34] found fourteen articles

that found a positive relationship between population and terrorist attacks. No other

relationship in the survey paper had more articles in agreement than the positive

relationship between population and terrorism. Some of these articles suggested that

population be included in any analysis to control for the effect of population upon

the number of attacks. Population statistics come from the World Bank database.
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Population Density.

In Section 2.3, the indicators that the Department of Homeland Security uses as

indicators of terrorism are discussed. One of these indicators is population density,

since there is the desire to conduct attacks on these concentrated target centers.

Consequently, this indicator is included to evaluate how well population density serves

as an indicator of terrorism. Population density statistics come from the World Bank

database and are the average number of people per square kilometer of land in the

country.

Unemployment.

Another commonly researched indicator is unemployment, however, many articles

come to conflicting conclusions regarding the statistic. One potential reason for these

disparate results is different data sources with different definitions of unemployment.

In numerous databases, individual countries define unemployment differently. These

different definitions cause the countries to be compared to each other based upon

different scales. To remedy this problem, the unemployment data are projections

from the International Labor Organization, which uses one common definition and

evaluates across the entire world. The data comes from the World Bank database

and is recorded as the percentage of people unemployed in the country.

There is a difference between unemployed and underemployed, where the latter

are individuals working at a level where they are drastically overqualified. Data

representing underemployment were not accessible through direct or indirect means

where the integrity of the data was consistent with the rest of the variables. How-

ever, in future research, it would be interesting to explore the relationship between

underemployment and terrorism, if reputable data could be collected.
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Military Expenditure.

In terrorism research, it is common to analyze the level of democracy or the type of

government. One common problem with these analyses is that the level of democracy

is a subjective measure or the type of government can be drastically different when

comparing the official type of government with the subjective opinion of how the

country is actually governed. In Li’s analysis, the level of democracy is broken into

constituent parts and analyzed to determine the effect of democracy through the

constituent parts [29]. Another important aspect of government is the importance of

the military. In order to assess the importance of the military to the government,

the percentage of GDP spent on the military is assessed. This data comes from the

World Bank database.

Education Expenditure.

Another important aspect of the government and a commonly debated indicator

in terrorism research is education. In order to gauge the level and importance of

education in a country, the percentage of GDP spent on education is assessed. The

data comes from the World Bank database.

Urbanization.

In Section 2.3, modern terrorists are shown to both hide and conduct their oper-

ations in cities. Therefore, it follows that countries with higher levels of urbanization

could potentially have more terrorist attacks. In order to analyze this belief, the

level of urbanization in a country is analyzed. The data comes from the World Bank

database and is the percentage of people living in urban areas.
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Life Expectancy.

Life expectancy is the average age a newborn infant would live if prevailing pat-

terns at the time of birth were to remain constant throughout its life and can serve

as an indicator of the conditions in a country, such as medical, sanitary, and security.

The relation, if any, to terrorism is explored. The data comes from the World Bank

database.

Gender Equality.

How a country treats women and the opportunities that women have can be

very descriptive. To analyze the relationship with terrorism, an indicator of gender

equality is included in the model. This indicator is the ratio of girls to boys enrolled

in secondary education and comes from the World Bank database. Data addressing

the population gender ratio or the gender ratio in the work place would be interesting

to analyze for future analysis. However, analyzing the ratio in secondary education

shows more than the number of females to males, but also addresses women’s rights,

especially education, in these countries. Consequently, this metric will be used to

assess gender equality.

Freedom of the Press.

Since the GTD’s data collection process uses open media sources to find terrorist

attacks, a Freedom of the Press index is used to control for countries with closed

media sources. The index used comes from Freedom House, which is the same source

used by Drakos and Li [30, 29].
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Foreign Intervention.

It is interesting to look at the relationship between foreign intervention and ter-

rorist attacks as well. The data for foreign intervention is a sub-indicator from the

Fragile State Index called external intervention. External intervention is defined as

the effect of other countries upon the country of interest.

Oil Production.

Our review of the literature determined that oil production has not been analyzed

with regards to terrorism. While not applicable to the whole world, this variable could

highlight a relationship specific to the African continent. This data for this indicator

comes from U.S. Department of Energy and looks at total annual oil production in

average thousand barrels per day.

Carter’s Factors.

Also included in this model are four of five of the factors analyzed in Chapter

three. The four factors include economic fragility, lack of border control, political

corruption, and social fragmentation. Poverty was not included in this model due

to the data imputation, since poverty had the most missing data points of any other

variable, almost 80%. Furthermore, this variable was found to be insignificant in both

the Chapter III model, as well as other research in the field [34]. Additionally, research

specific to finding the relationship between poverty and terrorism has already been

thoroughly conducted. The results are that poverty and terrorism do not have a strong

relationship. Lastly, in a practical sense, witholding poverty from the model reduces

the amount of data necessary to conduct the analysis, which allows an additional

variable to be analyzed.
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Contagion.

Lastly, contagion is well founded in the terrorism literature [34, 1]. Contagion is

an autoregressive component, specifically a lag term. Most articles only analyze one

lag of the dependent variable, but this research analyzes two lags of the dependent

variable. These lag terms are simply the number of terrorist attacks in the same

country from the previous year or two. In order to maintain consistency, this data

comes from the GTD.

4.3 Results

In order to find robust, accurate, and predictive indicators of terrorism, multiple

iterations of model construction were undertaken. The following sections report the

model, block cross-validation, and the reasoning for constructing the model. Then a

comparison of the models is conducted.

Full Model and Blocked Cross-Validation.

The results of the full model can be seen in Table 8.

At α = .05, unemployment, freedom of the press and the two year lag are sig-

nificant, with freedom of the press having a negative relationship. Other research

commonly finds a positive relationship between terrorism and freedom of the press

due to the data collection process, however, this research analyzed the whole world

and start analysis in 1968. In Africa since 2007, freedom of the press allows citizens

to express their political disdain through other means than terrorism, so the presence

of freedom of the press indicates less terrorism. At α = .01, population, education ex-

penditure, life expectancy, gender equality, foreign intervention, fragmentation, and

the one year lag are all significant with gender equality exhibiting a negative relation-

ship and the largest absolute effect on terrorism. Consequently, countries providing
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Table 8. Comparison of Models using All Variables

Dependent variable:
Terrorist Attacks

Full Model Full Model without outliers
Population 0.498∗∗∗ 0.420∗∗∗

(0.124) (0.108)

Population.Density 0.087 0.216
(0.147) (0.152)

Unemployment 0.350∗∗ 0.376∗∗∗

(0.139) (0.142)

Military −0.109 −0.223∗

(0.117) (0.124)

Education 0.750∗∗∗ 0.650∗∗∗

(0.140) (0.146)

Urbanization 0.199 0.204
(0.134) (0.138)

Life.Expectancy 0.539∗∗∗ 0.407∗∗∗

(0.129) (0.140)

Gender.Equality −0.793∗∗∗ −0.764∗∗∗

(0.135) (0.138)

Freedom.of.the.Press −0.297∗∗ −0.279∗∗

(0.123) (0.125)

Foreign.Intervention 0.687∗∗∗ 0.557∗∗∗

(0.153) (0.151)

EVI −0.078 −0.122
(0.119) (0.120)

Border.Security 0.187 0.250∗

(0.146) (0.151)

Fragmentation 0.606∗∗∗ 0.519∗∗∗

(0.150) (0.150)

Corruption 0.013 0.001
(0.143) (0.139)

Oil.Production 0.098 0.047
(0.139) (0.139)

One.yr.lag 0.478∗∗∗ 0.835∗∗∗

(0.156) (0.175)

Two.yr.lag 0.396∗∗ 0.018
(0.157) (0.178)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9. Comparison of Blocked Cross-Validation Results across models

secondary education opportunities to women seem able to decrease terrorism more

than if that country had high border security or greater military expenditure.

In Table 12, the blocked cross-validation results can be seen for all of the models.

Each variable has the parameter estimate, the variance below the estimate, and nota-

tion depicting significance level. Clearly, this model lacks predictive capability. First,

due to the data requirements of the IRLS algorithm to approximate theta, which is

based upon the number of variables in the independent data, the models for 2008 and

2009 could not be constructed. Second, validation residuals are high due to misfitting

the model. The model predicting 2013 attacks (using 2007-2012 data) predicts 6.4

million terrorist attacks for Nigeria and over 17 thousand for Somalia. Since the high-

est number of attacks in the dataset is 597 (Nigeria 2012), these estimates drastically

increase the error term. Before conducting any analysis, the countries of Nigeria and

Somalia were considered outliers in regards to the dependent variable. These two

countries represent the top 5% of terrorist attacks on average for Africa in this time

period, which can be seen in Figure 4.

Being in the top 5% does not make them outliers by themselves, however, their

averages of 202 attacks for Somalia and 194 attacks for Nigeria grossly outweigh

Algeria, the country with the third largest average of 74 attacks. These countries are

clearly outliers in terrorist attacks and essentially leverage the model parameters to
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Figure 4. Cumulative Distribution of African Countries by 2007-2013 Average Annual
Terrorist Attacks
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get the best fits. In order to remedy this problem, these countries are removed from

the model and the model is rerun. While it is undesirable to remove countries from

the model, it is the interest of this research to determine the relationships between

terrorism throughout all of Africa and these indicators, not only Nigeria and Somalia.

Additionally, this model should help countries predict the extent of their vulnerability

to terrorism in order to prepare for the attacks. Countries like Somalia and Nigeria

can expect consistently large amount of terrorist attacks at least in the near future.

Therefore, removing Somalia and Nigeria from the model does not compromise the

main purpose of the model.

Full Model with Nigeria and Somalia removed and Blocked Cross-

Validation.

The results of the full model with Nigeria and Somalia removed can be seen in

the left column of Table 8. Removing outliers caused border security and military

expenditure to become significant in the model with α = .10, where military expendi-

ture has a negative relationship with terrorism. Additionally, the removal of outliers

causes the two year lag to no longer be significant and almost doubles the effect of

the one year lag causing it to be the greatest indicator of terrorism incidents. This

indicates the level of activity seen in the previous year is likely to continue. Lastly,

unemployment became significant at α = .01.

In Table 12, the blocked cross-validation results can be seen for all of the models.

This model clearly outperforms the full model in regards to predictive capability. The

root mean square error (RMSE) of approximately 30 indicates that predictions are

likely to be within 30 incidents. Without considering the year 2013, the model has

an RMSE of approximately 12 incidents. Thirty incidents, while much smaller than

the full model, is still a very wide range for predicting terrorist attacks, especially
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considering the effects of one terrorist attack. Consequently, it was decided to conduct

a backward stepwise regression based upon AIC to construct the model and then

validate the smaller model.

Reduced Model and Blocked Cross-Validation.

Using a stepwise regression that minimizes AIC, a reduced model is constructed.

The reduced model can be seen in Table 10. Unemployment, urbanization, freedom

of the press, and the two year lag are significant at α = .05 with freedom of the press

maintaining a negative relationship. All of the variables that are significant at α =

.01 in the full model are still significant at that level, with gender equality having a

negative relationship with the largest absolute relationship with terrorism.

One particular variable that was not included in the analysis was a spatial com-

ponent, or analyzing the terrorism occurring in neighboring countries. Looking at

Figure 4 the countries with more terrorist attacks tend to border each other. In order

to assess if this is true, a variable that measures the spatial component is constructed.

This variable was constructed similarly to border security, but used one year lag val-

ues instead of the security apparatus score. The number of attacks that occurred

in neighboring countries is multiplied by the percentage of border shared with that

country. Then, these numbers are aggregated for all of the bordering countries of the

focal country. This variable is essentially a spatial autoregressive component and is

added to the reduced model with the results in Table 11.

In Table 12, the blocked cross-validation results can be seen for all of the models.

This model performs poorly in terms of prediction for the same reason behind the

poor performance of the full model with outliers. This model has fewer indicators,

which means that fewer indicators have to be monitored in the future. Addition-

ally, the smaller dimensionality of the problem allowed blocked cross-validation to be
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conducted for every year.

Table 10. Comparison of Models using stepwise process

Dependent variable:
Terrorist Attacks

Reduced Model Reduced Model without outliers
Population 0.562∗∗∗ 0.439∗∗∗

(0.101) (0.101)

Unemployment 0.261∗∗ 0.289∗∗

(0.128) (0.117)

Education 0.728∗∗∗ 0.606∗∗∗

(0.132) (0.132)

Urbanization 0.255∗∗

(0.119)

Life.Expectancy 0.550∗∗∗ 0.474∗∗∗

(0.124) (0.128)

Gender.Equality −0.802∗∗∗ −0.710∗∗∗

(0.130) (0.133)

Freedom.of.the.Press −0.290∗∗ −0.229∗∗

(0.117) (0.117)

Foreign.Intervention 0.651∗∗∗ 0.417∗∗∗

(0.131) (0.133)

Border.Security 0.247∗

(0.139)

Fragmentation 0.687∗∗∗ 0.528∗∗∗

(0.135) (0.135)

One.yr.lag 0.511∗∗∗ 0.739∗∗∗

(0.155) (0.093)

Two.yr.lag 0.371∗∗

(0.153)

Constant 0.848∗∗∗ 0.556∗∗∗

(0.101) (0.103)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Reduced Model with Nigeria and Somalia removed and Blocked Cross-

Validation.

Conducting a separate stepwise regression minimizing AIC created the reduced

model with the outliers, Nigeria and Somalia, removed can be seen in Table 10. Com-

pared to the reduced model with outliers, urbanization and the two year lag are no

longer significant at α = .10. This makes sense since these countries have had sus-

tained terrorism problems and Nigeria has the greatest amount of urbanization due to

the only mega-city in Africa, Lagos. Furthermore, border security became significant

at α = .10, which shows that border security is an important indicator of terrorism

in Africa excluding Somalia and Nigeria. Otherwise all other indicators maintain

the same significance level and relationship direction. However, the actual parameter

estimates do change causing the one year lag to have the greatest relationship with

terrorism.

Similar to the previous model, a spatial autoregressive component is added to the

reduced model with the results in Table 11.

In Table 12, the blocked cross-validation results are summarized for all of the

models. This model performs better than any other model. The total RMSE is ap-

proximately 25 incidents and approximately 10 without the year 2013. Furthermore,

this model has fewer indicators, which means that fewer indicators have to be moni-

tored in the future. Additionally, the smaller dimensionality of the problem allowed

conducting blocked cross-validation for every year.

Model Comparisons.

It is worth discussing the poor predictive performance of the year 2013 models.

All of the models grossly miss predicted the number of terrorist attacks in the year

2013 during blocked cross-validation. It is important to note that 2013 saw a drastic

64



increase in terrorism across much of Africa. Djibouti recorded 196 more attacks than

the previous 6 years combined. Libya recorded 173 more attacks than the previous 6

years combined and Mozambique recorded 14 more attacks than the previous 6 years

combined. This sharp increase in attacks shows the growing problem of terrorism

throughout Africa. Additionally, it shows that the year 2013 stands out in compar-

ison to the other years in the model due to the much larger scale of terrorism. It is

believed this 2013 increase changed the semi-stationary temporal nature of the inci-

dents; meaning the variance in the incidents was too great for this model to predict

accurately.

In order to assess why the model does not capture the drastic changes in 2013,

the reduced model without outliers predictions for 2013 is examined. A map of the

predictions by this model can be seen in Figure 5.

Only three countries had predictions off by more than 60 (Djibouti, Libya, and

Kenya) and 90% of countries fell within the RMSE of 25 attacks. Djibouti had

263 attacks more than predicted. While the model predicted a slight increase from

the previous, it did not capture the extent of the increase. It is believed that this

changed occurred due to increased foreign military presence, especially by the United

States. The model predicted a doubling of the attacks from 2012 for Libya, but

it was still under predicted by 195 attacks. It is believed this occurred due to the

change in government with the removal of Gaddafi. Kenya’s number of attacks for

2013 stayed the same, but the model predicted 191 more attacks. When looking at

the data, a lot of indicators changed slightly indicating more attacks. These slight

increases when aggregated vastly over-estimated the 2013 prediction. It is believed

more data would have prevented this problem by fine-tuning the data. In conclusion,

this model can still be improved upon. A predictive model that is off by approximately

25 attacks is better than no model, but has a large amount of variability to make
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Figure 5. 2013 Model Predictions for Reduced Model without Outliers
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Table 11. Comparison of All Models Including Spatial Component

practical decisions. Consequently, in future research it is recommended to include

foreign military presence, changes in government, and include more terrorism data as

it becomes available.

In Table 11, the different attributes of the models are compared. As mentioned

previously the reduced model without Nigeria and Somalia outperformed the other

models in predictive capability and dimensionality. Additionally, reduced model with-

out Nigeria and Somalia outperformed the other models in regards to AIC and BIC.

Furthermore, a likelihood-ratio test, which is discussed in Section 2.5, between the

models without outliers indicate that the reduced model is superior with a p-value

of .540. It is also interesting to note that reduced model without outliers improves

the model fit and cuts the RMSE in half when compared to the best model from the

confirmatory analysis.

The fit of the model and the cross-validation RMSE without 2013 perform slightly

worse with the addition of the spatial component. Additionally, the spatial component

is not statistically significant when added to the reduced model with or without

outliers. However, the addition of the spatial component does improve the overall

cross-validation results. In order to analyze what is occurring. The SSE for the

time-blocked cross-validation can be seen in Table 12.
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Table 12. Comparison of All Models by Cross-Validation Including Spatial Component

It appears that including the spatial component makes predictions worse for 2008,

201,0 and 2011, the best years of prediction for the reduced model without outliers.

However, it predicts much better in 2012 and 2013, which are the worst predictions for

the reduced model without outliers. Therefore, it appears that the spatial component

is growing in importance as an indicator. This can be seen by comparing the average

number of attacks for the entire data set (Figure 4) and the predictions for 2013

(Figure 5).

It is believed that there is not enough modern data to cause the spatial component

to be significant. However, when more data is available, adding this component to

future analysis would likely improve predictive capability and especially address the

worse predictions in recent years.

4.4 Conclusion

The reduced model removing outliers performs best compared to the other mod-

els. The variables population, education, life expectancy, gender equality, foreign

intervention, fragmentation, and the one year lag have a robust relationship with

terrorism. This model answers the second research question. To answer the third
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research question, these relationships are analyzed using classification.
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V. Classification

5.1 Overview

The third and final research question proposed in Section 1.3:

• Can these variable relationships undergo classification methods, such as classifi-

cation trees, in order to determine breakpoints in socio-economic characteristics

of countries, which indicate increased vulnerability to terror attacks?

To answer this question, classification trees are constructed and analyzed. Clas-

sification trees are used to analyze the newly found indicator relationships and to

determine breakpoints of these relationships that indicate either an increase or de-

crease vulnerability to terrorism.

5.2 Classes

To conduct classification, the dependent data is divided into classes. The purpose

of this classification is to determine which countries are most vulnerable to terrorism

and which factors (at specific levels) these countries have in common. While it is true

that one terrorist attack can have severe consequences, one terrorist attack could

be labeled as a terrorist incident rather than a recurring problem. Therefore, the

cutoff will not be countries with no attacks and countries with one or more attacks.

Additionally, by not using one as the cutoff, this provides a buffer against common

complaints against the GTD such as data collection and a broad definition of terror-

ism. Classification trees require sufficient observations in both classes so that insight

can be provided for both sides of the tree. This is due to the nature of classification

trees and their dependence upon sample size. Table 13 depicts cumulative probability

of number of attacks.
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Table 13. Distribution of Terrorist Attacks

The cutoff was set to four terrorist attacks. This means that countries with less

than four attacks in a year are in one class and those with four or more attacks are

in the other class. This allows the focus on terrorism to highlight the top 25% of

annual terrorist attacks. This classification looks at socio-economic indicators and

the breakpoints of those indicators which separate the top 25% of annual terrorist

attacks.

5.3 Classification Tree Description

Classification Trees analyze a relationship between variables. As opposed to re-

gression, classification trees analyze the independent variables in regards to a depen-

dent variable which split the data into classes. The independent variable that causes

the greatest split in the dependent data starts the tree. For instance, all or the vast

majority of countries with a population greater than some amount are more likely

to have a higher vulnerability to terrorism. Conversely, countries below the same

specified population are less vulnerable to terrorism. This divides the data into two

groups. Using the same procedure, these groups are further split using factors which

provide the best classification potential. This continues until a group can no longer
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be split or some other stopping criteria is met. At the end of each branch of the tree

is a number that represents the dominant class at the end of that branch. ANOVA

trees differ from classification trees in that instead of classes they divide the data into

larger and smaller values and report the average at the end of the tree. When using a

zero or one as the values of the dependent variable, an ANOVA tree returns the per-

centage of the group in class one. Therefore, in order to add transparency, ANOVA

results using the class dependent variable are added to the classification trees.

To interpret a classification tree, an individual, or in this case a country, assess

which side of the breakpoint they lie upon and follow that branch. Then they would

do the same at the next breakpoint until they reach the end of the tree. At the end

of the tree they should determine whether they were correctly classified, determine

their prediction for the upcoming year, or look at attributes of similar countries in

the other class depending upon their purposes for using the tree.

5.4 Models

Two different models are used to construct classification trees. The first tree is

constructed using all the variables from the full model of the exploratory analysis.

The second model only looks at the variables used in the reduced model without

outliers. The lags are left out of the classification since the goal of this research is

to find indicators which could be used to decrease terrorism vulnerability. Finding

the breakpoints in the lags does not provide useful insight as they are not directly

controllable. Additionally, while some models removed the countries of Nigeria and

Somalia from analysis, these countries remain in the analysis of classification trees.

Due to classification, the extent of terrorism in these countries no longer drives the

model, but are simply grouped in with the other country-year combinations with four

or more attacks. The class with less than four attacks is represented by a 0 and the
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class with four or more attacks is represented with a 1.

Full Model Classification.

Figure 6. Classification Tree for Full Model

The classification tree for the full model can be seen in Figure 6. Circles at the

end of the tree indicate the classification, either a 0 or 1, and the ANOVA results in

parentheses show the percentage of data points in the group of class 1, high vulnera-

bility. The first division in the tree comes from population with the breaking point at

approximately 32.2 million people. The greatest separation occurs where the country

population is greater than 32.2 million (right side of the tree).

Continuing on the right branch of the tree the next division is population density at

34 people per square kilometer. Based upon our sample, when a country’s population

is higher than 32.2 million and population density is less than 34 people per square

kilometer that country is likely to experience 4 or more terrorist attacks. If the

population density is greater than 34, the tree continues down to the fragmentation
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score. A fragmentation score at this point greater than 8.65 always resulted in four

or more attacks in our example, where as less than that score resulted in analyzing

education. The education cutoff is 5.529 where countries spending more than 5.529%

of GDP on education are more likely to have a terrorist problem. However, unlike

the previously discussed classifications, the ANOVA results show that this cutoff is

not definite and contains some misclassification.

If the country has less than 32.2 million people, then fragmentation is the next

indicator to monitor. A fragmentation score higher than 9.15 makes terrorism more

likely, but not definite. However, a fragmentation score lower than 5.65 means the

vulnerability of a terrorism problem is likely small. If the fragmentation score is

between these ranges than the percent of GDP spent on the military is the next

indicator to examine. A country spending less than 1.348% is less likely to have a

terrorist problem, while other countries need to examine annual oil production. If

oil production is greater than .0175, regardless of the unemployment level resulted in

low vulnerability. Misclassification was at 38% for unemployment exceeding 9.65%;

this means oil producing countries with higher unemployment are more vulnerable.

Countries with oil production lower than .0175, next need to address border secu-

rity. Countries with border security greater than 8, at this point in the tree, have

greater vulnerability. While countries with a border security less than 8 only had less

terrorism vulnerability.

Now that this tree has been constructed, it is important to analyze these findings

to determine intervention strategies. It is not surprising that population is the first

classifier, since it is the most robust indicator in terrorism research. However, popu-

lation size cannot be easily influenced. Other variables of note include fragmentation

and population density, but once again not much can be done to influence these in-

dicators. However, countries with less than 32.2 million people with fragmentation

74



scores less than 9.15 have some options to reduce the chances of high vulnerability

to a terrorism threat. These options include spending less on the military, however,

this could be ill-advised. If a country is an oil producer, it should focus on having a

low unemployment rate. This makes sense since oil producing countries are likely to

have better finances and a large unemployed population within that country is likely

to be disgruntled and potentially look to terrorism for either political dissonance or

to receive some money. If the country does not produce much oil, it is wise for that

country to invest in border security, because this could potentially reduce terrorism.

It is interesting to note that many of the variables deemed unimportant in regres-

sion become classifiers in the classification tree. This does not attack the legitimacy of

either methodology, but means that variables for predicting the quantity of terrorist

attacks and the variables for splitting high and low numbers of attacks are different.

In order to assess how well classification works for the variables in model 3, another

classification tree is constructed.

Reduced Model Classification.

The classification tree for the reduced model can be seen in Figure 7. Consistent

with the full model, population is the first classifier with a breakpoint at 32.2 mil-

lion people. Those with populations greater 32.2 million then need to assess their

fragmentation score. 19 out of 20 countries with fragmentation scores higher than

8.05 have high vulnerability, while other countries must assess their level of foreign

intervention. All countries with foreign intervention scores greater than 8.55 at this

point have a terrorism problem, while other countries need to assess the urbanization

of their population. Those countries with an urban population greater than 62.48%,

are more likely to have a terrorist problem than those that do not.

Those countries with a population less than 32.2 million also need to assess their
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Figure 7. Classification Tree for Reduced Model

fragmentation score. Countries with a fragmentation score greater than 9.15 are

more likely to have a terrorist problem, while countries with a fragmentation score

less than 5.65 are considered to have low terrorism vulnerability. The countries who’s

fragmentation falls between these intervals need to evaluate their freedom of the press.

Countries with a low freedom of the press, less than 28.5, are more vulnerable, while

the other country outcomes are based upon their education spending. Countries

spending greater than 6.082% of their GDP on education are more likely to have a

terrorism problem than countries which spend less.

This model has many similarities to the other model, such as population and

fragmentation being very important to classifying. However, there are numerous dif-

ferences as well. The indicators of foreign intervention, urbanization, education, and

freedom of the press are now useful classifiers and much easier to influence than the

population and fragmentation in a country. Consequently, the governing body of the

country has more feasible options to mitigate their country is terrorism vulnerabil-
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ity. For instance, countries with large populations and low fragmentation scores can

decrease the terrorism threat by decreasing foreign intervention or at least the percep-

tion, decrease urbanization by encouraging suburban living, and decreasing spending

on education or decrease the connection between general education and changes to

culture and society which perpetrates a terrorist mindset. On the other hand, coun-

tries with populations less than 32.2 million and with fragmentation scores between

5.65 and 9.15 can increase the freedom of the press in their country and decreasing

spending on education or decrease the connection between general education and so-

cietal changes which harbor a terrorist mindset. Coupling these strategies with the

strategies from the other classification tree provides leaders with a better understand-

ing of terrorists and some potential ways to decrease the vulnerability to terrorism in

countries across Africa.

5.5 Conclusion

Now that numerous indicators have been quantitatively explored, greater insight

has been found into terrorism and the terrorist mindset. These indicators have been

explored and have confirmed already found relationships, determined new previously

unexplored relationships, and confirmed non-existent relationships. Furthermore,

these indicators have been further examined using classification and certain break-

points have been identified which can be used to determine the attributes of countries

with greater terrorism threats, defined as the countries with the upper quartile in an-

nual terrorist attacks. While population and fragmentation in a country are the main

indicators of a terrorism problem, other indicators that can be influenced or shaped

within the constraints of the government were also found to reduce the effects of ter-

rorism vulnerability. These variables include military expenditure, border security,

unemployment, freedom of the press, urbanization, education, and foreign interven-
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tion. Lastly, these breakpoints were analyzed to give recommendations to decision

makers and the governing bodies of each country.
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VI. Conclusion

6.1 Summary

Currently, the U.S. government lacks a thorough knowledge of terrorism and their

mindsets, which causes the U.S. to take a reactionary response to terrorism instead

of a preventative approach. This research provided an outline to test social science

perspectives on terrorism and gain greater strategic insights into terrorism in Africa.

These questions were answered in Chapters III, IV, & V, respectively. The first

question looked to statistically defend the qualitatively based findings of Carter. The

second question examined additional variables beyond these explained by Carter.

The third question involved assessing important variables using a classification tree

to determine the breakpoints of these indicators.

6.2 Key Findings

The answer to these research questions returned numerous results; the key results

are summarized below.

Confirmatory Analysis.

Of Carter’s five factors, four of them were found statistically significant. Poverty

was insignificant, a common finding among terrorism research. Of the four significant

variables, only economic vulnerability had a relationship with terrorism contrary to

Carter’s beliefs. Economic fragility seems to indicate less terrorist attacks, since

stable economies provide preferred targets for terrorism. The last three variables

were corruption, border security, and fragmentation. In terrorism research, this is the

first time that border security has been assessed and a proxy defining the relationship
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of greater border security is used. Results show a reduction in terrorist attacks where

border security is greater.

Additionally, fragmentation held the greatest significance in the model and was

the second most important variable in classification after population, a common and

well defined indicator of terrorism in the literature. Carter’s qualitative analysis did

not perform well after being quantitatively assessed, however, not all of her five factors

were significant and the blocked cross-validation results produced a RMSE greater

than 50. Clearly, Carter’s five factors were not all related to terrorism and they

are not adequate by themselves to closely predict the number of terrorist attacks.

Consequently, an exploratory analysis of additional indicators garnered insight about

terrorism and helped to construct a potential preventative strategy.

Exploratory Analysis.

In the exploratory analysis, 17 potential indicators of terrorism, including the

four significant factors from Carter’s research were included. While some expected

relationships were robustly significant, such as population and fragmentation, other

unexpected relationships were robustly significant, such as education spending and

gender equality. Additionally, gender equality had the largest effect on terrorism,

behind the one year lag. The inclusion of these additional variables eventually led

to a model with a RMSE of approximately 25, reducing the confirmatory analysis

results by half.

Classification Analysis.

In order to further explore these variable relationships, the same variables were

used for classification purposes. A classification tree was used to determine the break-

points of these variables in order to determine the characteristics of countries with
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Table 14. Top Indicators Across All Analyses

and without a terrorism problem. It is important to note that a terrorism problem is

defined as having four or more attacks in a year. Two trees were constructed using

either 15 of the potential indicators, lag terms were excluded, or the 8 indicators that

were determined important. Both of these trees showed the importance of population

of and fragmentation in a country to the number of terrorist attacks. Although these

indicators are not easily changed, other indicators were also found to be significant

that can be altered much easier. This could lead to anti-terrorism strategies specific

to a country at certain population and fragmentation levels.

Overall.

Table 14 provides a summary of the analyses outcomes for all three approaches.

An “X” in the column represents either significance in the best model or presence(as
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in the classification trees). Border Security and Fragmentation are the most robust

indicators since they are important in all three analyses. Population, Unemployment,

Education Expenditure, Freedom of the Press, Foreign Intervention, and the One

Year Lag are also considered robust indicators, since they were deemed important in

every model they were analyzed.

6.3 Contributions

This research contains numerous implications and contributions to the academic

field of terrorism research as well as a practical approach to the governments con-

fronting terrorism that were not found in the extensive literature review conducted

for this research.

Academic Contributions.

This research is scoped to focus on recent terrorism threats in a specific region. It

is the first time where Africa has been exclusively examined with regards to terrorism.

While other researchers have used indicator variables to represent Africa, exclusively

examining Africa provides a clarity for how the specific variables operate for this

continent. Additionally, many researchers use as much data as possible going back

to the late 60’s. However, due to the changing nature of terrorism, this is the first

research to capture modern terrorism by examining the terrorism from the years 2007

to 2013.

The next academic contributions come from the confirmatory analysis. This is

the first time that a qualitative article has been examined and analyzed to provide

quantitative support. Conducting this type of exploratory analysis, provides support

or helps to counter perceived observational findings or initial beliefs about terrorism.

Second, many of the variables were seldom examined. Specific proxies for qualitative
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concepts are identified and investigated. Poverty and economic fragility specifically

incorporated new proxies, with less literature findings. Additionally, border security

remained a qualitative before. Now this research confirms the belief that greater bor-

der security reduces terrorism, quantitatively. This shows the importance of bridging

inter-discipline gaps among qualitative and quantitative research.

The rest of the academic contributions come from the exploratory analysis. As

mentioned before, this research is a new attempt to exclusively analyze Africa in

regards to terrorist attacks. Consequently, investigating variables which hold unique

meaning for Africa. Oil production is one variable that has rarely been analyzed

before and was found to have no statistically significant effect on the number of

terrorist attacks in Africa. Additionally, robustly significant relationships were found

for population, education spending, gender equality, and fragmentation. While it

is very common to build a model to examine relationships in the literature, it is

rare to test the predictive capabilities of the model. Next, the variables from the

exploratory analysis were used to construct classification trees to further analyze the

relationships and develop potential courses of action. This type of analysis is rarely

done in terrorism research.

Practical Contributions.

Whenever conducting research it is important to consider who should care about

this research and who would use this model. Clearly, African countries have a par-

ticular interest in the predictive model, as well as the classification trees, to reduce

vulnerability to terrorism. Other countries, as well as international organizations

who wish to reduce Africa’s vulnerability to terrorism would also be interested in

this research. In Africa, the Trans-Sahara Counter Terrorism Partnership, similar

counter terrorism groups, and the African governments’ specific counter terrorism or
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counter intelligence organizations could use this model to shape strategic decisions.

Various U.S. organizations would have an interest in using this research including,

AFRICOM and DHS. Lastly, other countries and international organizations with

specific counter-terrorism components would find this research useful for considering

future DIME operations.

This research also has numerous practical applications, especially for countries

confronting terrorism. First, finding the statistically significant relationship between

increasing border security and decreasing terrorism can be vital to anti-terrorism

campaigns. While this finding may not at first seem impressive, it is important to

note that no current strategy to reduce terrorism has been quantitatively supported

[10]. Therefore, decision makers could look into spending money on border security

across Africa which shows promise to reduce terrorism vulnerability; this translates

to mitigating the terrorism threat and improving security stability across the region.

The other large practical application of this research are the potential strategies to

reduce terrorism for countries with specific population sizes and fragmentation scores.

Strategic resources put toward the right terrorism indicators provide a potential av-

enue to reduce the terrorism threat.

6.4 Future Research

While much research has been conducted to find the relationships indicative of

terrorism, this task will never be completed. Additionally, few researchers have further

explored these potential relationship and generated strategies to prevent terrorism.

This leaves many areas for additional research, as well as adaptations to research.
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Research Adaptations.

First, some changes could be made to the scope of the problem. For this research,

it was decided to analyze Africa. Smaller or larger regions of the world could be

analyzed. It may be interesting to see the effects of sub-Saharan Africa or parts

of Africa that may have been colonized by a specific world power. In the opposite

direction, it would be interesting to examine the same features including the Middle

East or even on a global scale. This research has shown Africa specific relationships,

such as border security, or lack of relationship, such as oil production. It would be

interesting to test these relationships at the global level to see if they are valid only

for Africa or descriptive of terrorism in general.

Another aspect of the scope that could be altered is the analysis time frame. Due

to the establishment of AFRICOM and the Iraq troop surge, it was determined to

start the analysis in the year 2007, however, claims could be made to analyze over

other time periods. Once again, it would be interesting to take these results and see

if they are applicable to other time frames. This would should how robust the results

are and if our findings are applicable to pre-modern terrorism as well as modern

terrorism.

Another important part of this research that could be adapted is variable selection.

It would be interesting to analyze the results of the analysis, especially the exploratory

analysis if different variables are selected. For instance, it was hoped that variables

related to religion would be collected and analyzed, such as percent of the population

that is Christian and the percent of the population that is Muslim. However, this

data could not be collected with the same integrity as the other data used.
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Additional Research.

Aside from potential adaptations, this research has set the foundation for future

research to be conducted. First, further validation of the model should be competed

with data that the GTD releases in 2015 and subsequent years. This could remedy

problems with large miss predictions in 2013. Additionally, throughout the research,

a shortage of data was a sizable concern. Having additional years provides more data

for modern terrorism, which can be used to create an expanded model or to simply

improve the current model.

The changes in 2013 indicate greater than expected increases. The models in this

research, especially chapter III and IV, assume stationarity. This should be relaxed

and methods developed or investigated to handle non-stationary time series data.

While not apparent in the 2013 data, a spatial component could be necessary to

explain the sharp growth of terrorism in the year 2013 if this trend continues to 2014.

Further improvements to the model could be pre-processing the data with a Prin-

cipal Component Analysis (PCA). This could paint even more detail into how the

independent data is interrelated and how those relationships affect terrorism. Addi-

tionally, discriminant analysis or neural networks could be used to classify aside from

the classification tree in order to determine the important factors for classification by

the size of affect as well as conducting a dimensionality assessment.

Additional research could be conducted to focus upon the practical application

of this research. For instance, numerous strategies to potentially reduce terrorism

vulnerability were highlighted. This strategy identifies which variables and their lev-

els are indicators of terrorism. They do not describe specific strategies or actions

required to help shape the environment. For instance, if a country needs to reduce

unemployment, it could look at spending more on border security, which would pro-

vide additional jobs and further protect the borders. A greater understanding of the
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indicators will aid strategic decision making and resource allocation. Furthermore,

these specific strategies should be examined or potentially simulated to determine

their effects. For instance, it seems that promoting border security prevents terror-

ists from crossing the border and committing attacks, but does increased security

stop the attack or just relegate it to the country of origin? This and similar ques-

tions should be answered before implementation. Once these questions are answered

a risk analysis should be conducted upon these strategies to determine the worst

case, best case, and most likely outcomes of the strategy. This additional analysis

would bridge the gap between statistically validated suggestions and fully planned

and implementable strategies.

6.5 Way Ahead

Since the late 90’s, terrorism has been growing in both the quantity of terrorist

attacks and the lethality of those attacks [3]. Various governments have witnessed

this growing problem and responded with various counter-measures. With incidents in

Africa at all time highs in 2013, these measures are proving inadequate. Identifying

underlying patterns or indicators of terrorism provides an opportunity to change

strategies and decisions to prevent greater escalation in the upcoming years. After

years of conflict and military operations aimed at mitigating terrorism, we must look

for ways to foster diplomatic relations and leverage other resources to reduce the

vulnerability to terrorism across Africa and the World.
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